簡易檢索 / 詳目顯示

研究生: 邱煜舜
Chiu, Yu-Shuen
論文名稱: 各種網印膠材在單多晶矽太陽能電池的應用研究
Study of Various Screen-Printed Pastes for Single- and Multi-crystalline Silicon Solar Cells Applications
指導教授: 黃守仁
Whang, Thou-Jen
共同指導教授: 鄭錦隆
Cheng, Chin-Lung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 絲網印刷太陽能電池正銀漿背銀漿背鋁漿碳化矽漿
外文關鍵詞: Screen-printing, Solar cells, Front Ag paste, Rear Ag paste, Rear Al paste, SiC paste
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 典型的p-n接面光伏矽晶太陽能電池包括在前表面形成歐姆接觸線路和細線,而在背面接觸覆蓋整個電極,並在前表面塗上抗反射層。在商業化生產的矽晶太陽能電池中,絲網印刷的製程是使用最廣泛的。絲網印刷的主要優點是該方法製程簡單,即使其接觸電阻和遮蔽損失大,亦廣泛使用。商用矽晶太陽能電池使用絲網印刷製程為將銀漿印於前面及背面網格,且在背面整個區域網印鋁漿。導電漿通常包括四個成分:銀或鋁粉顆粒,有機載體,玻璃粉和添加劑。迄今為止,有許多研究人員致力於改善的絲網印刷矽晶太陽能電池的前接觸電極的性能。本文更加重視的玻璃粉組成比,銀粉粒徑和燒結溫度對性能的影響研究。實驗結果顯示,在正面電極銀漿中,小粒徑的銀粉的焊接拉力高於大粒徑銀粉,也就是說在前面電極銀漿中的銀粉與矽晶片的接觸是非常緊密地,所以有最佳的焊接性能。背面銀漿電極使用低Tg的玻璃粉具有最佳的焊接張力及均勻性。背鋁電極是由鋁漿與矽晶片(100)燒結後堆疊Al-Si共晶層/Al-P+層(背表面電場:BSF)/Si(100)的結構。BSF層是由矽晶片中大量的矽與鋁粉反應形成。藉由玻璃粉使得鋁與矽晶片形成電極。因此使用高Tg的玻璃粉,鋁粉不利與矽晶片(100)經由共燒反應。另外開發新的冷卻技術應用於太陽能模組,藉由絲網印刷碳化矽漿於太陽能電池的背面。由於碳化矽具有良好的熱輻射功能,應用於太陽能模組可以有效地提高從太陽能電池的散熱,增加太陽能模組的功率。

    A typical silicon solar cell consists of a p-n junction formed on the surface, a front ohmic contact stripe and fingers, a back contact that covers the entire back surface, and an antireflection coating on the front surface. Screen-printed solar cells are the most widely used cells in the commercial production of silicon solar cells. The key advantage of screen printing is the relative simplicity of the process in spite of its high contact resistance and high shading loss. Commercial mono- and multi-crystalline silicon solar cells use screen-printed process for depositing both the front and rear Ag paste based gridded electrodes, and Al based back whole area metal contacts. Conductive paste usually consists of four constituents: silver or aluminum powder, organic vehicle, glass frit and additive. To date, there have many researchers dedicating to improve the performance of screen-printed front contacts for mono- and multi-crystalline silicon solar cells. This thesis placed more emphasis on the study of the effects of glass frit recipe, silver powder size and temperature on properties. The experimental results show that the welding tension of the front-side electrodes printed by small size silver particle is bigger than that of the front-side electrodes printed by big size silver particles, that is to say, the front-side silver electrode printed by silver paste made of small size silver powder contact very closely with the silicon wafer and have the best welding performance. The rear-side electrode of silver paste prepared by low Tg glass frit has the largest welding tension, and the welding tension of each electrode is uniform. The Al paste/Al-Si eutectic layer/Al-P+ layer (Back-Surface-Field, BSF)/Si(100) stacked structure was obtained by firing the Al paste/Si(100) stacked substrate. A BSF layer can be formed by the regrown silicon due to large amount of Si dissolved in the Al melt. The glass frit layer was formed between the porous Al bulk and the silicon substrate interface after finished contact. Thus, it was difficult to incorporate the Al particles into the silicon substrate through higher Tg of glass frit when the stacked Al paste/Si(100) structure was co-fired at 780 oC. To achieve novel cooling technology for solar module, the performance of screen-printed SiC paste on the back side of solar cell was added. Since SiC has good thermal radiation function, thus its application on PV module can effectively enhance the heat flow from solar cell to back sheet thus increases generation of electricity.

    CONTENTS 中文摘要..............................................................................................Ⅰ Abstract……………………………………………………………....Ⅱ Acknowledgements…………………………………………………..Ⅳ Content………………………………………………………………Ⅴ Figure of Contents…………………………………………………..Ⅷ Table of Contents……………………………………………………Ⅹ Chapter 1 Introduction…………………………………………………………..1 1.1 Fabrication of industrial solar cells………………………………4 1.2 Review of screen-printed technology……………………………10 1.3 Rear aluminum pastes for solar cell applications……….……….15 1.4 Front silver pastes for solar cell applications…………...……….18 1.5 Rear silver pates for solar cell applications……………………..21 1.6 Rear SiC pastes for solar cell applications……………………....22 1.7 Motivation and specific research objectives……………………..24 1.8 Outline of this thesis……………………………………………...25 Chapter 2 Effects of silicate glasses in aluminum pastes on physical and electrical characteristics of screen-printed multi-crystalline silicon solar cells..28 2.1 Abstract………………………………………………………........28 2.2 Introduction………………………………………………………..28. 2.3 Experimental………………………………………………………29 2.4 Results and discussion…………………………………………….31 2.5 Conclusions………………………………………………………..36 Chapter 3 Effects of spherical silver powders with different sizes in front silver pastes on the conversion efficiency of silicon solar cells……………37 3.1 Abstract………................................................................................37 3.2 Introduction………………………………………………………..38 3.3 Experimental………………………………………………………39 3.4 Results and discussion…………………………………………….41 3.4.1 The parameters of spherical silver powders………………….....41 3.4.2 The influence of spherical silver powders with different sizes on the performance of sintered membrane………………………..................42 3.4.3 The influence of spherical silver powders with different sizes on the welding tension and weldability of front-side silver electrode............44 3.5 Conclusions………………………………………………………..47 Chapter 4 Effects of glass frit in back electrode pastes on solderability and electrical characteristics of screen-printed multi-crystalline silicon solar cells...49 4.1 Abstract…………………………………………………………….49 4.2 Introduction………………………………………………………...49 4.3 Experimental………………………………………………………..51 4.4 Results and discussion………………………………………….......53 4.4.1 The influence of glass frit with different recipe on the performance of sintered membrane…………………………………………..............53 4.4.2 The influence of glass frit with different recipe on the welding tension and weldability of back-side silver electrode……….................54 4.4.3 The effect of silver electrode contacts closely with the silicon wafer and has a good contact performance…………………............................57 4.5 Conclusions……………………………………………………….....57 Chapter 5 Improved module characteristics of screen-printed silicon solar cells by SiC pastes………………………………………………………………..59 5.1 Abstract……………………………………………………………...59 5.2 Introduction……………………………………………………….....59 5.3 Experimental………………………………………………………....61 5.3.1 Sample preparation…………………………………………….......61 5.3.2 Outdoor performance tests…………………………………...........63 5.4 Results and discussion…………………………………………........64 5.5 Conclusions………………………………………………………….67 Chapter 6 Conclusion……………………………………………………………….68 References………………………………………………………………..73 Figure of Contents Fig. 1-1. Fabrication Process of Screen Printing Silicon Solar Cells….....5 Fig. 1-2. Temperature profile of a completely processed solar cell in an IR conveyor belt furnace…………………………………………..................8 Fig. 1-3. (a) The top view image of stainless steel mesh (b) the top view image of front electrode configuration of a commercial silicon solar cell………………………………………………………..........................12 Fig. 1-4. Screen-printing process of the front Ag contact……………......13 Fig. 1-5. Screen-printing process of the rear Al contact……………….....13 Fig. 1-6. (a) The front side image of a solar cell screen-printed front silver contact (b) the rear side image of a solar cell screen-printed rear silver and aluminum contacts………………………………......................................14 Fig. 1-7. Shows a typical cross section of the aluminum rear side metallization performed by SEM……………………………...................15 Fig. 1-8. Temperature profile for firing through a silicon-nitride layer in a belt furnace……………………………………………………................16 Fig. 1-9. Shows the formation of schematic aluminum rear side contact from a screen printed Al paste at a firing process at Tpeak =795 oC….......17 Fig. 1-10. A schematic temperature profile for firing wafers is show…...19 Fig. 1-11. Proposed schematic model for the ionic reduction mechanism during Ag front contact formation under normal industrial firing conditions…...............................................................................................20 Fig. 1-12. A schematic of the glass layer and Ag crystallite distribution on polished silicon surface………………………………………..................22 Fig. 1-13. Silicon solar cell module cross-section…………………..........23 Fig. 1-14. A schematic solar cell cross section image of a SiC layer screen-printed on the rear side of comercial silicon solar cell. The SiC layer was formed at the Al contact surface of commercial silicon solar cells………………….................................................................................23 Fig. 2-1. Shows how to make Al paste…………………………………...30 Fig. 2-2. SEM cross section images of a 4wt% of (a-b) Si-Bi-Ti (c) Si-Bi-Zn (d) Si-Bi-Sr SGs in APs screen-printed on the rear surface of SPMSSCs co-fired at 780 oC………………….........................................32 Fig. 2-3. SEM cross section images of (a) binary Si-Bi-Ti (3wt%) and Si-Bi-B (1wt%) (b) binary Si-Bi-Ti (2wt%) and Si-Bi-B (2wt%) (c) binary Si-Bi-Ti (1wt%) and Si-Bi-B (3wt%) (d) Si-Bi-B (4wt%) SGs in APs s creen-printed on the rear surface of SPMSSCs co-fired at 780 oC............33 Fig. 2-4. SEM surface morphology images of (a) Si-Bi-Ti, Si-Bi-Zn, and Si-Bi-Sr (b) binary Si-Bi-Ti (3wt%) and Si-Bi-B (1wt%) SGs in APs screen-printed on the rear surface of SPMSSCs co-fired at 780 oC..........34 Fig. 2-5. Cell results, including short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), and conversion efficiency (CE), of various SGs in APs as rear side electrode of SPMSSCs............................35 Fig. 3-1. Shows how to make front Ag paste………………………….....40 Fig. 3-2. SEM images and size distribution of spherical silver powders..42 Fig. 3-3. The surface sintering SEM images of front-side silver electrodes printed by PV1, PV2 and PV3…………………………….......................44 Fig. 3-4. Welding tension diagrams of front-side silver electrodes prepared by silver powder at the different particle size………................................46 Fig. 3-5. Cell results, including short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), and conversion efficiency (CE), of small size silver powder in silver pastes as front side electrode of SPMSSCs………………………………………......................................47 Fig. 4-1. Shows how to make rear Ag paste……………………………..52 Fig. 4-2. The surface sintering SEM images of back-side silver electrodes printed by BS1, BS2 and BS3………………………………...................54 Fig. 4-3. Welding tension diagrams of back-side silver electrodes prepared by glass frits at the different Tg…………………….................................56 Fig. 4-4. The cross section sintering SEM images of back-side silver electrodes printed by BS1, BS2 and BS3…………………….................57 Fig. 5-1. Shows how to make SiC paste…………………………...........61 Fig. 5-2. SEM top view image of a SiC layer screen-printed on the rear side of commercial silicon solar cell………………………....................62 Fig. 5-3. SEM cross section image of a SiC layer screen-printed on the rear side of comercial silicon solar cell. The SiC layer was formed at the Al backside surface field (BSF) surface of commercial silicon solar cells………………………………………..............................................63 Fig. 5-4. Images of outdoor testing environment with module A and B...63 Fig. 5-5. Performance ratio (PR) comparison during 6:00~10:00 o’clock (a) during 10:00~14:00 o’clock (b) and during 14:00~18:00 o’clock (c)…………………………………………………….............................64 Fig. 5-6. Back sheet temperature comparison………………..................65 Fig. 5-7. Thermal radiation mechanisms in module A with SiC layer…65 Fig. 5-8. P.R. and avg of T (BS-Ambient) was calculated per day. Module-A showed higher P.R. than Module-B while module back sheet has higher temperature than ambient……………………..............66 Fig. 5-9. EL inspection of Mechanical Load testing without SiC layer (a) and With SiC layer (b)…………………………………..........................67 Table of Contents Table 1-1. Process sequence for screen-printed solar cells…………...8 Table 2-1. Shows the combination of the experimental group………..30 Table 3-1. The different silver particle size or shape……………….....42 Table 3-2. shows the combination of the experimental group………...43 Table 3-3. Welding performance data of front-side silver electrodes of solar cell PV-1, PV-2 and PV-3……..................……………………....45 Table 4-1. shows the combination of the experimental group………..52 Table 4-2. Welding performance data of back-side silver electrodes of solar cell BS-1, BS-2 and BS-3………................…………………….55 Table 5-1. Experiment module preparation…………………………...62

    [1] H. J. Moeller, Semiconductor for Solar Cells, Artech
    House, London, (1993).
    [2] M.A. Green, Progress in Photovoltaics; 17, (3), pp.183-
    189, (2009).
    [3] J. Perlin, From Space to Earth-The story of Solar
    Electricity, AATEC Publications, Ann Arbor, Michigan,
    (1999).
    [4] W.N. Hess, The effects of high altitude explosions, in:
    Space Physics, D. LeGalley and A. Rosen, John Wiley &
    Sons, Inc., New York, USA, pp. 573-610, (1964).
    [5] A.F.B. Braga, S.P. Moreira, P.R. Zamperi, J.M.G. Bacchin, and P.R. Mei, Solar Energy Materials and Solar Cells, 92, 4, pp.418-424, (2008).
    [6] W.P. Mulligan, D.H. Rose, M.J. Cudzinovic, D.M. Ceuster, K.R. Mclntosh, D.D. Smith, and R.M. Swanson, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Pairs, France, pp. 387-390, (2004).
    [7] W. P. Mulligan and S. R. M., in 12th Workshop on Crystalline silicon Solar Cell Materials and Processes, Golden, CO, USA, pp.30-37, (2002).
    [8] W. P. Hirshman, and M. Schmela, in Photo International, 3, pp.100-125, (2006).
    [9] L. Zhang and A. Ciftja, Energy Mater. Sol. Cells 92, pp.1450-1461, (2008).
    [10] M. D. Sabatino, S. Binetti, J. Libal, M. Acciarri, H. Nordmark, and E. J. Ovrelid, 95, pp.529-533, (2011).
    [11] J. Pan, G.L. Tonkay, and A. Quintero, J. Elec. Manu., 9, pp.203-213, (1999).
    [12] L. Frantzis, E. Jones, C. Lee, M. Wood, and P. Wormser, in Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, pp.2100-2103, (2000).
    [13] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman and R.P. Mertens, Proceedings of the IEEE, pp.711-730, (1997).
    [14] S.W. Glunz, J. Knobloch, D. Biro, and W. Wettling, in: Proceeding of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp.392-395, (1997).
    [15] S. W. Glunz, B. Koster, T. Leimenstoll, S. Rein, E. Schaffer, J. Knobloch, and T. Abe, Prog. Photovoltaic. Res. Appl. 8 (2), pp.237-240, (2000).
    [16] O. Schultz, S. W. Glunz, and G. Willeke, Prog. Photovoltaic. Res. Appl. 12 (7), pp.553-558, (2004).
    [17] M. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaic. Res. Appl. 18, pp.144-150, (2010).
    [18] J. Hoornstra, and B. Heurtault, in: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp.1-4, (2009).
    [19] A. Kress, P. Fath, and E. Bucher, Proceedings of the 16th EPVSC, Glasgow, pp.1359-1361, (2000).
    [20] D.W.K. Eikelboom, A.R. Burgers, M.J.A.A. Goris, P. Mansharden, A. Schonecker, and G.P. Wyers, Proceedings of the 17th EPVSC, Munich, pp.1547-1550, (2001).
    [21] C.J. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D.S. Ginley, Mat. Res. Soc. Symp. Proc; 730, pp.79-84, (2002).
    [22] S. Riegel, F. Mutter, T. Lauermann, B. Terheiden, and G. Hahn, Energy Procedia 21, pp.14–23, (2012).
    [23] D.L. Meier, and D.K. Schroder, IEEE Trans. Electron Devices. ED-31, pp.647-653, (1984).
    [24] H.H. Berger, J. Electrochem. Soc. 119, pp.507-514, (1972).
    [25] G.K. Reeves, and H.B. Harrison, IEEE Trans. Electron Device Lett. EDL-18(25), pp.1083-1085, (1982).
    [26] S.J. Procter, L.W. Lindholm, and J.A. Maze, IEEE Trans. Electron Devices, ED-30, pp.1535-1542, (1983).
    [27] J. Chen, and W.L. Oldham, IEEE Trans. Electron Device Lett. EDL-5, pp.178-180, (1984).
    [28] P.N. Vinod, B.C. Chakravarty, K. Ravi, L. Mohan, and S.N. Singh, Semiconductor Sci. Technol. 15, pp.286-290, (2000).
    [29] B. An, X.H. Cai, F.S. Wu, Y.P. Wu, and T. Nonferr. Metal. Soc; 20, pp.1550-1553, (2010).
    [30] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Alloys Compd, 549, pp.221-225, (2013).
    [31] S. Riegel, B. Terheiden, and G. Hahn, Presentation at the 3rd Metallzation workshop, Charleroi, Belgium, (2011).
    [32] S.B. Cho, K.K. Hong, B.M. Chung, and J.Y. Huh, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp.766-770, (2009).
    [33] Y. Zhang, Y. Yang, J. Zheng, G. Chen, C. Chen, J.C.M. Hwang, B.S. Ooi, A. Kovalskiy, and H. Jain, Thin Solid Film; 518, pp.111-113, (2010).
    [34] J.Y. Huh, K.K. Hong, and S.B. Cho et al., Mater. Chem. Phys. 131(1), pp.113-119, (2011).
    [35] B.C Sung, K.H. Kyoung, W.J. Ji, Y. JaeSung, and S.M. Joo-Youlhuh, Sol. Energy Mater. Sol. Cells 93, pp.898-904, (2009).
    [36] Y. Zhang, Y. Yang, J. Zheng, W. Hua, and G. Chen, Mater. Chem. Phys. 114, pp.319-322, (2009).
    [37] A.S. Ionkin, B.M. Fish, and Z.R. Li, ACS Appl. Mater. Interfaces 3, pp.606-611, (2011).
    [38] C.H. Lin, S.Y. Tsai, and S.P. Hsu, Sol. Energy Mater. Sol. Cells 92(9), pp. 1011-1015, (2088).
    [39] J. Pan, and G.L. Tonkay, J. Elec. Manu; 9, pp.203-213, (1999).
    [40] A.D. Haigh, in Proc. 12th IEEE Photovoltaic Specialists Conf., pp.360-361, (1976).
    [41] L. Frisson, M. Honpre, R. Mertens, R. Govaerts, and R.Van Overstraeten, in Proc. 14th IEEE Photovoltaic Specialists Conf., pp.941-942, (1980).
    [42] G. Cheek, R. Janssens, M. Leempoels, L. Frisson, R. Mertens, and R. Van Overstraeten, in Proc, 4th Eur. Community Photovoltaic Solar Energy Conf. pp.926-930, (1982).
    [43] L. Frisson, G. Cheek, R. Mertens and R. Van Overstraeten, Commission Eur. Commun. Report. EUR, pp.1002-1006, (1984).
    [44] B. M. Austin, Solid State Technology, pp. 53-58, (1969).
    [45] A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, Wiley, (2003).
    [46] L. F. Miller, Paste Transfer in the Screening Process, Sol. St. Tech, pp.46-52, (1969).
    [47] B.J. Rudolph, Proceedings of the International Symposium on Microelectronics, pp.576-581, (1986).
    [48] N. Board, “Screen Printing Technology Hand Book”, Asia Pacific Business Press, 742, (2003).
    [49] J. Pan, G.L. Tonkay, and A. Quintero, J. Elec. Manu; 9, pp.203-213, (1999).
    [50] D.H. Neuhaus, and A. Munzer, Advances in Optoelectronics, Article ID 24521. pp.1-15, (2007).
    [51] J. Mandelkorn, and J.M. Lamneck, in: Proceedings of 9th IEEE PV Specialists Conference, IEEE, pp.66-70, (1972).
    [52] J. Eguren, J. del Alamo, and A. Luque, In 3Rd European Community (EC) Photovoltaic Solar Energy Conference Proceedings, pp.654-657, (1980).
    [53] C. F. Gay, in: Proceedings of the 13th IEEE Photovoltaic Specialists Conference, IEEE, pp.444-449, (1978).
    [54] K.R. Bube, V.K. Kapur, C.F. Gay, and K.J. Lewis, in: Proceedings of the 1980 ISHM Meeting, ISHM, pp.265-269, (1980).
    [55] G.C. Cheek, R.P. Mertens, R.Van. Overstraeten, and L. Frisson, IEEE Trans. Electron Devices, ED-31 pp.602-605, (1964).
    [56] M. B. Field and L. R. Scudder, in: Proceedings of 12th IEEE Photovoltaic Specialists Conference, Baton Rouge, USA, pp.303-308, (1976).
    [57] J. Mandelkorn, and J. H. Lamneck, J. Appl. Phys; 44, pp.4785-4787, (1973).
    [58] F. Huster, in: Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp.1466-1469, (2005).
    [59] G. Vladivostok, PhD thesis, Microstructure and mechanical aspects of multicrystalline silicon solar cells, Technical University Hamburg-Harburg, 2013.
    [60] M. Fu, G.L. Jin, X. Ding, L. Fan, and D. Chen, Key Engineering Materials; 537, pp. 209-213, (2013).
    [61] K. Sopian, N. Amin, N. Asim, and S.H. Zaidi, Eur. J. Sci. Res; 24 (3), pp. 365-372, (2008).
    [62] C.H. Lin, S.Y. Tsai, S.P. Hsu, and M.H. Hsieh, Sol. Energy Mater. Sol. Cells; 92, pp. 986-991, (2008).
    [63] S. Kim, S. Sridharan, C. Khadilkar, and A. Shaikh, in: Proceedings of the IEEE 31st Photovoltaic Specialists Conference and Exhibition, Orlando, USA, pp.1100-1102, (2005).
    [64] F. Duerinckx, and J. Szlufcik, Sol. Energy Mater. Sol. Cells; 72, pp.231-246, (2002).
    [65] M. Rauer, C. Schmiga, M. Hermle, and S.W. Glunz, Phys. Status Solid A; 207, (5), pp.1249-1251, (2010).
    [66] R. Bock, J. Schmidt, R. Brendel, H. Schumann, and M. Seibt, J. Appl. Phys.;104, pp.37-41, (2008).
    [67] C. Schmiga, H. Nagel, and J. Schmidt, Pro. Photovol: Res. Appl, pp.533-539, (2006).
    [68] I. Volotsenko, M. Molotskii, Z. Barkay, Z. Marczewski, P. Grabiec, and B. Jaroszewicz, J. Appl. Phys; 107, pp.45-50, (2010).
    [69] M. Rauer, C. Schmiga, M. Hermle, and S.W. Glunz, Proc. 24th EU PVSEC, Hamburg, Germany; pp.1059-1062, (2009).
    [70] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman and R.P. Mertens, Sol Energy Mater. Sol. Cells; 65, pp.249-259, (2001).
    [71] A.F. Carroll, C. Fredric, and R.J.S. Young, Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp.1633-1637, (2001).
    [72] C. Ballif, D.M. Huljic, G. Willeke, and A. Hessler-Wysser, Appl. Phys. Lett. 82, (12), pp.1878-1880, (2003).
    [73] G. Schubert, B. Fischer, and P. Fath, PV in Europe Conference, pp. 343-346, (2002).
    [74] M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, Processdings 31st IEEE PVSC, pp.1185-1188, (2005).
    [75] A. Schneider, C. Gerhards, F. Huster, W. Neu, M. Spiegel, P. Fath, E. Bucher, R.J.S. Young, A.G. Prince, J.A. Raby, and A.F. Carroll, Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp. 1768-1770, (2001).
    [76] J.D. Fan, B.H. Jia, and M. Gu, Photo. Res; 2, pp.111-120, (2014).
    [77] Y.J. Lee, M.S. Choi, and D.H. Kim, J. Phys. Chem; 116, pp.23231-23235, (2012).
    [78] S.S. Sun, Sol. Energy Mater. Sol. Cells; 85, pp.261-267, (2005).
    [79] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Alloys Compd; 549, pp.221-225, (2013).
    [80] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, Appl. Energy; 112, pp.657-662, (2013).
    [81] S.A. Ketkar, G.G. Umarji, G.J. Phatak, T. Seth, U.P. Mulik, and D.P. Amalnerkar, Mater. Sci. Eng; 132, pp.197-203, (2006).
    [82] J.C. Lin, and C.Y. Wang, Mater. Chem. Phys; 45, pp.136-144, (1996).
    [83] Y.P. Zhang, Y.X. Yang, J.H. Zheng, G.R. Chen, C. Cheng, J.C.M. Hwang, B.S. Ooi, A. Kovalskiy, and H. Jain, Thin Solid Films; 518, pp.111-113, (2010).
    [84] Z. Liu, X.L. Qi, and H. Wang, Adv. Powder Technol. 23, pp.250-255, (2012).
    [85] K.K. Hong, S.B. Choa, and J.S. You, Sol. Energy Mater. Sol. Cells; 93, pp.898-904. (2009).
    [86] Y.P. Zhang, Y.X. Yang, J.H. Zheng, W. Hua, and G.R. Chen, Mater. Chem. Phys; 114, pp.319-322, (2009).
    [87] A.S. Ionkin, B.M. Fish, and Z.R. Li, ACS Appl. Mater. Interfaces; 3, pp.606-611, (2011).
    [88] C.H. Lin, S.Y. Tsai, and S.P. Hsu, Sol. Energy Mater. Sol. Cells; 92, pp.1011-1015, (2008).
    [89] G.J. Zheng, Y.P. Tai, H. Wang, and J.T. Bai, J. Mater, Sci. Mater. Electron; 25, pp.3779-3786, (2014).
    [90] G. Wang, H. Wang, Y.B. Cui, and J.T. Bai, J. Mater, Sci. Mater. Electron; 25, pp.487-494, (2014).
    [91] A.Sinha, and B.P. Sharma, Bull, Mater. Sci; 28, pp.213-217, (2005).
    [92] N. Moudir, Y. Boukennous, N. Moulai-Mostefa, I. Bozetine, M. Maoudj, N. Kamel, Z. Kamel, and D. Moudir, Energy Procedia; 36, pp.1184-1191, (2013).
    [93] S.B. Rane, P.K. Khanna, and T. Seth, Mater. Chem. Phys. 82, pp.237-245, (2003).
    [94] G. Fraisse, C. Menezo, and K. Johannes, Solar Energy; 81, pp.1426-1438, (2007).
    [95] B.J. Brinkworth, B.M. Cross, R.H. Marshall, and H. Yang, Solar Energy; 61, pp.169-178, (1997).
    [96] B.J. Huang, T.H. Lin, W.C. Huang, R.H. Marshall, and F.S. Sun, Solar Energy; 70, pp.443-448, (2011).
    [97] G. Rockendorf, R. Sillmann, L. Podlowski, and B. Litzenburger, Solar Energy; 67, pp.227-237, (1999).
    [98] B. Sandnes, and J. Rekstad, Solar Energy; 72, pp.63-73, (2002).
    [99] A. Royne, and C.J. Dey, Solar Energy; 81, pp.1014-1024, (2007).
    [100] D.H. Neuhaus, and A. Munzer, Advances in OptoElectronics; pp.245-251, (2007).
    [101] C. Gong, E.V. Kerschaver, J. Robbelein, T. Janssens, N. Posthuma, J. Poortmans, and R. Mertens, IEEE Electron Device Lett. 31, pp576-578, (2010).
    [102] M.M. Hilali, A. Rohatgi, and S. Asher, IEEE Trans Electron Devices; 51, pp.948-955, (2004).
    [103] C.L. Cheng, and J.Y. Yang, IEEE Trans. Electron Device Lett. EDL-33, pp.697-699, (2012).
    [104] J.H. Yi, H.Y. Koo, J.H. Kim, Y.N. Ko, Y.C. Kang, H.M. Lee, and J.Y. Yun, J. Alloys Compd. 490, pp.488-492, (2010).
    [105] C.H. Lin, S.Y. Tsai, S.P. Hsu, and M.H. Hsieh, Sol. Energy Mater. Sol. Cells; 92, pp.986-991, (2008).
    [106] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, Sol. Energy Mater Sol Cells; 95, pp.2151-2160, (2011).
    [107] H.C. Fang, C.P. Liu, H.S. Chung, and C.L. Huang, J. Electrochem. Soc. 157, pp.455-458, (2010).
    [108] J.H. Yi, H.Y. Koo, J.H. Kim, Y.N. Ko, Y.J. Hong, Y.C. Kang, and H.M. Lee, J. Alloys Compd; 509, pp.6325-6331, (2011).
    [109] S. Kim, S. Sridharan, C. Khadilkar, and A. Shaikh, Photovoltaic Specialists Conference; pp.1100-1102, (2005).
    [110] R. Woehl, J. Krause, F. Granek, and D. Biro, IEEE Electron Device Lett. ; 32, pp.345-347, (2011).
    [111] S.K. Hong, H.Y. Koo, D.S. Jung, I.S. Suh, and Y.C. Kang, J. Alloys Compd.; 437, pp.215–219, (2007).
    [112] I. Dyamant, D. Itzhak, and J. Hormadaly, Non-Cryst. Solids; 351, pp.3503–3507, (2005).
    [113] S. Kontermann, M. Horteis, M. Kasemann, A. Grohe, R. Preu, E. Pink, and T. Trupke, Sol. Energy Mater. Sol. Cells; 93, pp.1630-1635, (2009).
    [114] R.J.S. Young, and A.F. Carroll, in: Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, pp.1731-1734, (2000).
    [115] C. Ballif, D.M. Huljic, A. Hessler-Wyser, and G. Willeke, in: Proceedings of the 29th IEEE Photovoltaic Specialists Conference, Glasgow, pp.360-363, (2002).
    [116] G. Schubert, F. Huster, and P. Fath, in: Proceedings of the Photovoltaic in Europe Conference, Rome, pp.343-346, (2002).
    [117] C. Ballif, D.M. Huljic, and G. Willeke, Appl. Phys. Lett. 82, pp.1878-1880,
    (2003).
    [118] J. Hoornstra, G. Schubert, K. Broek, F. Granek, and C. LePrince, in: Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, pp.1293-1296, (2005).
    [119] G. Schubert, F. Huster, and P. Fath, Sol. Energy Mater. Sol. Cells, 90, pp.3399-3406, (2006).
    [120] M.M. Hilali, B. To, and A. Rohatgi, in: Proceedings of the 14th Workshop on Crystalline Silicon solar Cell Materials and Processes, Winter Park, CO, pp.109-116, (2004).
    [121] M.M. Hilali, S. Srindharan, C. Khadilkar, A. Rohatgi, and S. Kim, J. Electron. Mater. 35, pp.2041-2047, (2006).
    [122] S.B. Rane, P.K. Khanna, T.Seth, G.J. Phatak, D.P. Amalnerkar, and B.K. Das, Mater. Chem. Phys. 82, pp.237-238, (2003).
    [123] S.J. Jeon, S.M. Koo, and S.A. Hwang, Sol. Energ. Mat. Sol. C93, pp.1103-1109, (2009).
    [124] J.F. Liu, Z.L. Liu, P. Ren, P.S. Xu, X.F. Chen, and X.G. Xu, Acta Phys. –Chim. Sin. 24(4), pp.571-575, (2008).

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE