| 研究生: |
邱煜舜 Chiu, Yu-Shuen |
|---|---|
| 論文名稱: |
各種網印膠材在單多晶矽太陽能電池的應用研究 Study of Various Screen-Printed Pastes for Single- and Multi-crystalline Silicon Solar Cells Applications |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 共同指導教授: |
鄭錦隆
Cheng, Chin-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 絲網印刷 、太陽能電池 、正銀漿 、背銀漿 、背鋁漿 、碳化矽漿 |
| 外文關鍵詞: | Screen-printing, Solar cells, Front Ag paste, Rear Ag paste, Rear Al paste, SiC paste |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
典型的p-n接面光伏矽晶太陽能電池包括在前表面形成歐姆接觸線路和細線,而在背面接觸覆蓋整個電極,並在前表面塗上抗反射層。在商業化生產的矽晶太陽能電池中,絲網印刷的製程是使用最廣泛的。絲網印刷的主要優點是該方法製程簡單,即使其接觸電阻和遮蔽損失大,亦廣泛使用。商用矽晶太陽能電池使用絲網印刷製程為將銀漿印於前面及背面網格,且在背面整個區域網印鋁漿。導電漿通常包括四個成分:銀或鋁粉顆粒,有機載體,玻璃粉和添加劑。迄今為止,有許多研究人員致力於改善的絲網印刷矽晶太陽能電池的前接觸電極的性能。本文更加重視的玻璃粉組成比,銀粉粒徑和燒結溫度對性能的影響研究。實驗結果顯示,在正面電極銀漿中,小粒徑的銀粉的焊接拉力高於大粒徑銀粉,也就是說在前面電極銀漿中的銀粉與矽晶片的接觸是非常緊密地,所以有最佳的焊接性能。背面銀漿電極使用低Tg的玻璃粉具有最佳的焊接張力及均勻性。背鋁電極是由鋁漿與矽晶片(100)燒結後堆疊Al-Si共晶層/Al-P+層(背表面電場:BSF)/Si(100)的結構。BSF層是由矽晶片中大量的矽與鋁粉反應形成。藉由玻璃粉使得鋁與矽晶片形成電極。因此使用高Tg的玻璃粉,鋁粉不利與矽晶片(100)經由共燒反應。另外開發新的冷卻技術應用於太陽能模組,藉由絲網印刷碳化矽漿於太陽能電池的背面。由於碳化矽具有良好的熱輻射功能,應用於太陽能模組可以有效地提高從太陽能電池的散熱,增加太陽能模組的功率。
A typical silicon solar cell consists of a p-n junction formed on the surface, a front ohmic contact stripe and fingers, a back contact that covers the entire back surface, and an antireflection coating on the front surface. Screen-printed solar cells are the most widely used cells in the commercial production of silicon solar cells. The key advantage of screen printing is the relative simplicity of the process in spite of its high contact resistance and high shading loss. Commercial mono- and multi-crystalline silicon solar cells use screen-printed process for depositing both the front and rear Ag paste based gridded electrodes, and Al based back whole area metal contacts. Conductive paste usually consists of four constituents: silver or aluminum powder, organic vehicle, glass frit and additive. To date, there have many researchers dedicating to improve the performance of screen-printed front contacts for mono- and multi-crystalline silicon solar cells. This thesis placed more emphasis on the study of the effects of glass frit recipe, silver powder size and temperature on properties. The experimental results show that the welding tension of the front-side electrodes printed by small size silver particle is bigger than that of the front-side electrodes printed by big size silver particles, that is to say, the front-side silver electrode printed by silver paste made of small size silver powder contact very closely with the silicon wafer and have the best welding performance. The rear-side electrode of silver paste prepared by low Tg glass frit has the largest welding tension, and the welding tension of each electrode is uniform. The Al paste/Al-Si eutectic layer/Al-P+ layer (Back-Surface-Field, BSF)/Si(100) stacked structure was obtained by firing the Al paste/Si(100) stacked substrate. A BSF layer can be formed by the regrown silicon due to large amount of Si dissolved in the Al melt. The glass frit layer was formed between the porous Al bulk and the silicon substrate interface after finished contact. Thus, it was difficult to incorporate the Al particles into the silicon substrate through higher Tg of glass frit when the stacked Al paste/Si(100) structure was co-fired at 780 oC. To achieve novel cooling technology for solar module, the performance of screen-printed SiC paste on the back side of solar cell was added. Since SiC has good thermal radiation function, thus its application on PV module can effectively enhance the heat flow from solar cell to back sheet thus increases generation of electricity.
[1] H. J. Moeller, Semiconductor for Solar Cells, Artech
House, London, (1993).
[2] M.A. Green, Progress in Photovoltaics; 17, (3), pp.183-
189, (2009).
[3] J. Perlin, From Space to Earth-The story of Solar
Electricity, AATEC Publications, Ann Arbor, Michigan,
(1999).
[4] W.N. Hess, The effects of high altitude explosions, in:
Space Physics, D. LeGalley and A. Rosen, John Wiley &
Sons, Inc., New York, USA, pp. 573-610, (1964).
[5] A.F.B. Braga, S.P. Moreira, P.R. Zamperi, J.M.G. Bacchin, and P.R. Mei, Solar Energy Materials and Solar Cells, 92, 4, pp.418-424, (2008).
[6] W.P. Mulligan, D.H. Rose, M.J. Cudzinovic, D.M. Ceuster, K.R. Mclntosh, D.D. Smith, and R.M. Swanson, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Pairs, France, pp. 387-390, (2004).
[7] W. P. Mulligan and S. R. M., in 12th Workshop on Crystalline silicon Solar Cell Materials and Processes, Golden, CO, USA, pp.30-37, (2002).
[8] W. P. Hirshman, and M. Schmela, in Photo International, 3, pp.100-125, (2006).
[9] L. Zhang and A. Ciftja, Energy Mater. Sol. Cells 92, pp.1450-1461, (2008).
[10] M. D. Sabatino, S. Binetti, J. Libal, M. Acciarri, H. Nordmark, and E. J. Ovrelid, 95, pp.529-533, (2011).
[11] J. Pan, G.L. Tonkay, and A. Quintero, J. Elec. Manu., 9, pp.203-213, (1999).
[12] L. Frantzis, E. Jones, C. Lee, M. Wood, and P. Wormser, in Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, pp.2100-2103, (2000).
[13] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman and R.P. Mertens, Proceedings of the IEEE, pp.711-730, (1997).
[14] S.W. Glunz, J. Knobloch, D. Biro, and W. Wettling, in: Proceeding of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp.392-395, (1997).
[15] S. W. Glunz, B. Koster, T. Leimenstoll, S. Rein, E. Schaffer, J. Knobloch, and T. Abe, Prog. Photovoltaic. Res. Appl. 8 (2), pp.237-240, (2000).
[16] O. Schultz, S. W. Glunz, and G. Willeke, Prog. Photovoltaic. Res. Appl. 12 (7), pp.553-558, (2004).
[17] M. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaic. Res. Appl. 18, pp.144-150, (2010).
[18] J. Hoornstra, and B. Heurtault, in: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp.1-4, (2009).
[19] A. Kress, P. Fath, and E. Bucher, Proceedings of the 16th EPVSC, Glasgow, pp.1359-1361, (2000).
[20] D.W.K. Eikelboom, A.R. Burgers, M.J.A.A. Goris, P. Mansharden, A. Schonecker, and G.P. Wyers, Proceedings of the 17th EPVSC, Munich, pp.1547-1550, (2001).
[21] C.J. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D.S. Ginley, Mat. Res. Soc. Symp. Proc; 730, pp.79-84, (2002).
[22] S. Riegel, F. Mutter, T. Lauermann, B. Terheiden, and G. Hahn, Energy Procedia 21, pp.14–23, (2012).
[23] D.L. Meier, and D.K. Schroder, IEEE Trans. Electron Devices. ED-31, pp.647-653, (1984).
[24] H.H. Berger, J. Electrochem. Soc. 119, pp.507-514, (1972).
[25] G.K. Reeves, and H.B. Harrison, IEEE Trans. Electron Device Lett. EDL-18(25), pp.1083-1085, (1982).
[26] S.J. Procter, L.W. Lindholm, and J.A. Maze, IEEE Trans. Electron Devices, ED-30, pp.1535-1542, (1983).
[27] J. Chen, and W.L. Oldham, IEEE Trans. Electron Device Lett. EDL-5, pp.178-180, (1984).
[28] P.N. Vinod, B.C. Chakravarty, K. Ravi, L. Mohan, and S.N. Singh, Semiconductor Sci. Technol. 15, pp.286-290, (2000).
[29] B. An, X.H. Cai, F.S. Wu, Y.P. Wu, and T. Nonferr. Metal. Soc; 20, pp.1550-1553, (2010).
[30] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Alloys Compd, 549, pp.221-225, (2013).
[31] S. Riegel, B. Terheiden, and G. Hahn, Presentation at the 3rd Metallzation workshop, Charleroi, Belgium, (2011).
[32] S.B. Cho, K.K. Hong, B.M. Chung, and J.Y. Huh, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp.766-770, (2009).
[33] Y. Zhang, Y. Yang, J. Zheng, G. Chen, C. Chen, J.C.M. Hwang, B.S. Ooi, A. Kovalskiy, and H. Jain, Thin Solid Film; 518, pp.111-113, (2010).
[34] J.Y. Huh, K.K. Hong, and S.B. Cho et al., Mater. Chem. Phys. 131(1), pp.113-119, (2011).
[35] B.C Sung, K.H. Kyoung, W.J. Ji, Y. JaeSung, and S.M. Joo-Youlhuh, Sol. Energy Mater. Sol. Cells 93, pp.898-904, (2009).
[36] Y. Zhang, Y. Yang, J. Zheng, W. Hua, and G. Chen, Mater. Chem. Phys. 114, pp.319-322, (2009).
[37] A.S. Ionkin, B.M. Fish, and Z.R. Li, ACS Appl. Mater. Interfaces 3, pp.606-611, (2011).
[38] C.H. Lin, S.Y. Tsai, and S.P. Hsu, Sol. Energy Mater. Sol. Cells 92(9), pp. 1011-1015, (2088).
[39] J. Pan, and G.L. Tonkay, J. Elec. Manu; 9, pp.203-213, (1999).
[40] A.D. Haigh, in Proc. 12th IEEE Photovoltaic Specialists Conf., pp.360-361, (1976).
[41] L. Frisson, M. Honpre, R. Mertens, R. Govaerts, and R.Van Overstraeten, in Proc. 14th IEEE Photovoltaic Specialists Conf., pp.941-942, (1980).
[42] G. Cheek, R. Janssens, M. Leempoels, L. Frisson, R. Mertens, and R. Van Overstraeten, in Proc, 4th Eur. Community Photovoltaic Solar Energy Conf. pp.926-930, (1982).
[43] L. Frisson, G. Cheek, R. Mertens and R. Van Overstraeten, Commission Eur. Commun. Report. EUR, pp.1002-1006, (1984).
[44] B. M. Austin, Solid State Technology, pp. 53-58, (1969).
[45] A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering”, Wiley, (2003).
[46] L. F. Miller, Paste Transfer in the Screening Process, Sol. St. Tech, pp.46-52, (1969).
[47] B.J. Rudolph, Proceedings of the International Symposium on Microelectronics, pp.576-581, (1986).
[48] N. Board, “Screen Printing Technology Hand Book”, Asia Pacific Business Press, 742, (2003).
[49] J. Pan, G.L. Tonkay, and A. Quintero, J. Elec. Manu; 9, pp.203-213, (1999).
[50] D.H. Neuhaus, and A. Munzer, Advances in Optoelectronics, Article ID 24521. pp.1-15, (2007).
[51] J. Mandelkorn, and J.M. Lamneck, in: Proceedings of 9th IEEE PV Specialists Conference, IEEE, pp.66-70, (1972).
[52] J. Eguren, J. del Alamo, and A. Luque, In 3Rd European Community (EC) Photovoltaic Solar Energy Conference Proceedings, pp.654-657, (1980).
[53] C. F. Gay, in: Proceedings of the 13th IEEE Photovoltaic Specialists Conference, IEEE, pp.444-449, (1978).
[54] K.R. Bube, V.K. Kapur, C.F. Gay, and K.J. Lewis, in: Proceedings of the 1980 ISHM Meeting, ISHM, pp.265-269, (1980).
[55] G.C. Cheek, R.P. Mertens, R.Van. Overstraeten, and L. Frisson, IEEE Trans. Electron Devices, ED-31 pp.602-605, (1964).
[56] M. B. Field and L. R. Scudder, in: Proceedings of 12th IEEE Photovoltaic Specialists Conference, Baton Rouge, USA, pp.303-308, (1976).
[57] J. Mandelkorn, and J. H. Lamneck, J. Appl. Phys; 44, pp.4785-4787, (1973).
[58] F. Huster, in: Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp.1466-1469, (2005).
[59] G. Vladivostok, PhD thesis, Microstructure and mechanical aspects of multicrystalline silicon solar cells, Technical University Hamburg-Harburg, 2013.
[60] M. Fu, G.L. Jin, X. Ding, L. Fan, and D. Chen, Key Engineering Materials; 537, pp. 209-213, (2013).
[61] K. Sopian, N. Amin, N. Asim, and S.H. Zaidi, Eur. J. Sci. Res; 24 (3), pp. 365-372, (2008).
[62] C.H. Lin, S.Y. Tsai, S.P. Hsu, and M.H. Hsieh, Sol. Energy Mater. Sol. Cells; 92, pp. 986-991, (2008).
[63] S. Kim, S. Sridharan, C. Khadilkar, and A. Shaikh, in: Proceedings of the IEEE 31st Photovoltaic Specialists Conference and Exhibition, Orlando, USA, pp.1100-1102, (2005).
[64] F. Duerinckx, and J. Szlufcik, Sol. Energy Mater. Sol. Cells; 72, pp.231-246, (2002).
[65] M. Rauer, C. Schmiga, M. Hermle, and S.W. Glunz, Phys. Status Solid A; 207, (5), pp.1249-1251, (2010).
[66] R. Bock, J. Schmidt, R. Brendel, H. Schumann, and M. Seibt, J. Appl. Phys.;104, pp.37-41, (2008).
[67] C. Schmiga, H. Nagel, and J. Schmidt, Pro. Photovol: Res. Appl, pp.533-539, (2006).
[68] I. Volotsenko, M. Molotskii, Z. Barkay, Z. Marczewski, P. Grabiec, and B. Jaroszewicz, J. Appl. Phys; 107, pp.45-50, (2010).
[69] M. Rauer, C. Schmiga, M. Hermle, and S.W. Glunz, Proc. 24th EU PVSEC, Hamburg, Germany; pp.1059-1062, (2009).
[70] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman and R.P. Mertens, Sol Energy Mater. Sol. Cells; 65, pp.249-259, (2001).
[71] A.F. Carroll, C. Fredric, and R.J.S. Young, Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp.1633-1637, (2001).
[72] C. Ballif, D.M. Huljic, G. Willeke, and A. Hessler-Wysser, Appl. Phys. Lett. 82, (12), pp.1878-1880, (2003).
[73] G. Schubert, B. Fischer, and P. Fath, PV in Europe Conference, pp. 343-346, (2002).
[74] M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, Processdings 31st IEEE PVSC, pp.1185-1188, (2005).
[75] A. Schneider, C. Gerhards, F. Huster, W. Neu, M. Spiegel, P. Fath, E. Bucher, R.J.S. Young, A.G. Prince, J.A. Raby, and A.F. Carroll, Proceedings of the 17th European Photovoltaic Solar Energy Conference, pp. 1768-1770, (2001).
[76] J.D. Fan, B.H. Jia, and M. Gu, Photo. Res; 2, pp.111-120, (2014).
[77] Y.J. Lee, M.S. Choi, and D.H. Kim, J. Phys. Chem; 116, pp.23231-23235, (2012).
[78] S.S. Sun, Sol. Energy Mater. Sol. Cells; 85, pp.261-267, (2005).
[79] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Alloys Compd; 549, pp.221-225, (2013).
[80] Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, Appl. Energy; 112, pp.657-662, (2013).
[81] S.A. Ketkar, G.G. Umarji, G.J. Phatak, T. Seth, U.P. Mulik, and D.P. Amalnerkar, Mater. Sci. Eng; 132, pp.197-203, (2006).
[82] J.C. Lin, and C.Y. Wang, Mater. Chem. Phys; 45, pp.136-144, (1996).
[83] Y.P. Zhang, Y.X. Yang, J.H. Zheng, G.R. Chen, C. Cheng, J.C.M. Hwang, B.S. Ooi, A. Kovalskiy, and H. Jain, Thin Solid Films; 518, pp.111-113, (2010).
[84] Z. Liu, X.L. Qi, and H. Wang, Adv. Powder Technol. 23, pp.250-255, (2012).
[85] K.K. Hong, S.B. Choa, and J.S. You, Sol. Energy Mater. Sol. Cells; 93, pp.898-904. (2009).
[86] Y.P. Zhang, Y.X. Yang, J.H. Zheng, W. Hua, and G.R. Chen, Mater. Chem. Phys; 114, pp.319-322, (2009).
[87] A.S. Ionkin, B.M. Fish, and Z.R. Li, ACS Appl. Mater. Interfaces; 3, pp.606-611, (2011).
[88] C.H. Lin, S.Y. Tsai, and S.P. Hsu, Sol. Energy Mater. Sol. Cells; 92, pp.1011-1015, (2008).
[89] G.J. Zheng, Y.P. Tai, H. Wang, and J.T. Bai, J. Mater, Sci. Mater. Electron; 25, pp.3779-3786, (2014).
[90] G. Wang, H. Wang, Y.B. Cui, and J.T. Bai, J. Mater, Sci. Mater. Electron; 25, pp.487-494, (2014).
[91] A.Sinha, and B.P. Sharma, Bull, Mater. Sci; 28, pp.213-217, (2005).
[92] N. Moudir, Y. Boukennous, N. Moulai-Mostefa, I. Bozetine, M. Maoudj, N. Kamel, Z. Kamel, and D. Moudir, Energy Procedia; 36, pp.1184-1191, (2013).
[93] S.B. Rane, P.K. Khanna, and T. Seth, Mater. Chem. Phys. 82, pp.237-245, (2003).
[94] G. Fraisse, C. Menezo, and K. Johannes, Solar Energy; 81, pp.1426-1438, (2007).
[95] B.J. Brinkworth, B.M. Cross, R.H. Marshall, and H. Yang, Solar Energy; 61, pp.169-178, (1997).
[96] B.J. Huang, T.H. Lin, W.C. Huang, R.H. Marshall, and F.S. Sun, Solar Energy; 70, pp.443-448, (2011).
[97] G. Rockendorf, R. Sillmann, L. Podlowski, and B. Litzenburger, Solar Energy; 67, pp.227-237, (1999).
[98] B. Sandnes, and J. Rekstad, Solar Energy; 72, pp.63-73, (2002).
[99] A. Royne, and C.J. Dey, Solar Energy; 81, pp.1014-1024, (2007).
[100] D.H. Neuhaus, and A. Munzer, Advances in OptoElectronics; pp.245-251, (2007).
[101] C. Gong, E.V. Kerschaver, J. Robbelein, T. Janssens, N. Posthuma, J. Poortmans, and R. Mertens, IEEE Electron Device Lett. 31, pp576-578, (2010).
[102] M.M. Hilali, A. Rohatgi, and S. Asher, IEEE Trans Electron Devices; 51, pp.948-955, (2004).
[103] C.L. Cheng, and J.Y. Yang, IEEE Trans. Electron Device Lett. EDL-33, pp.697-699, (2012).
[104] J.H. Yi, H.Y. Koo, J.H. Kim, Y.N. Ko, Y.C. Kang, H.M. Lee, and J.Y. Yun, J. Alloys Compd. 490, pp.488-492, (2010).
[105] C.H. Lin, S.Y. Tsai, S.P. Hsu, and M.H. Hsieh, Sol. Energy Mater. Sol. Cells; 92, pp.986-991, (2008).
[106] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, Sol. Energy Mater Sol Cells; 95, pp.2151-2160, (2011).
[107] H.C. Fang, C.P. Liu, H.S. Chung, and C.L. Huang, J. Electrochem. Soc. 157, pp.455-458, (2010).
[108] J.H. Yi, H.Y. Koo, J.H. Kim, Y.N. Ko, Y.J. Hong, Y.C. Kang, and H.M. Lee, J. Alloys Compd; 509, pp.6325-6331, (2011).
[109] S. Kim, S. Sridharan, C. Khadilkar, and A. Shaikh, Photovoltaic Specialists Conference; pp.1100-1102, (2005).
[110] R. Woehl, J. Krause, F. Granek, and D. Biro, IEEE Electron Device Lett. ; 32, pp.345-347, (2011).
[111] S.K. Hong, H.Y. Koo, D.S. Jung, I.S. Suh, and Y.C. Kang, J. Alloys Compd.; 437, pp.215–219, (2007).
[112] I. Dyamant, D. Itzhak, and J. Hormadaly, Non-Cryst. Solids; 351, pp.3503–3507, (2005).
[113] S. Kontermann, M. Horteis, M. Kasemann, A. Grohe, R. Preu, E. Pink, and T. Trupke, Sol. Energy Mater. Sol. Cells; 93, pp.1630-1635, (2009).
[114] R.J.S. Young, and A.F. Carroll, in: Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, pp.1731-1734, (2000).
[115] C. Ballif, D.M. Huljic, A. Hessler-Wyser, and G. Willeke, in: Proceedings of the 29th IEEE Photovoltaic Specialists Conference, Glasgow, pp.360-363, (2002).
[116] G. Schubert, F. Huster, and P. Fath, in: Proceedings of the Photovoltaic in Europe Conference, Rome, pp.343-346, (2002).
[117] C. Ballif, D.M. Huljic, and G. Willeke, Appl. Phys. Lett. 82, pp.1878-1880,
(2003).
[118] J. Hoornstra, G. Schubert, K. Broek, F. Granek, and C. LePrince, in: Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, pp.1293-1296, (2005).
[119] G. Schubert, F. Huster, and P. Fath, Sol. Energy Mater. Sol. Cells, 90, pp.3399-3406, (2006).
[120] M.M. Hilali, B. To, and A. Rohatgi, in: Proceedings of the 14th Workshop on Crystalline Silicon solar Cell Materials and Processes, Winter Park, CO, pp.109-116, (2004).
[121] M.M. Hilali, S. Srindharan, C. Khadilkar, A. Rohatgi, and S. Kim, J. Electron. Mater. 35, pp.2041-2047, (2006).
[122] S.B. Rane, P.K. Khanna, T.Seth, G.J. Phatak, D.P. Amalnerkar, and B.K. Das, Mater. Chem. Phys. 82, pp.237-238, (2003).
[123] S.J. Jeon, S.M. Koo, and S.A. Hwang, Sol. Energ. Mat. Sol. C93, pp.1103-1109, (2009).
[124] J.F. Liu, Z.L. Liu, P. Ren, P.S. Xu, X.F. Chen, and X.G. Xu, Acta Phys. –Chim. Sin. 24(4), pp.571-575, (2008).
校內:2025-12-31公開