| 研究生: |
朱訓鵬 Ju, Shin-Pon |
|---|---|
| 論文名稱: |
分子動力學與平行運算於奈米薄膜沉積模擬之應用 Investigation of Nano Thin Film Deposition Process Using Molecular Dynamics Simulation with an implementation of Parallel Computing Technique |
| 指導教授: |
翁政義
Weng, Cheng-I |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 奈米薄膜 、平行運算 、分子動力學 |
| 外文關鍵詞: | Parallel computing, Molecular dynamics, Nano thin film |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學觀察奈米薄膜沉積時的物理機制及以平行計算的方法探討模擬時的尺寸效應,所模擬的製程包含蒸鍍、濺鍍、離子團束沉積及大馬士革製程,所探討的製程參數包含沉積速率、沉積動能、沉積角度及基板溫度。由蒸鍍與濺鍍製程模擬的結果可知,沉積速率在入射動能較小的蒸鍍製程裏對薄膜結構並無明顯影響,但在高入射動能的濺鍍製程卻存在一最佳化沉積速率區間,讓薄膜的結構達到最佳的狀態;高入射動能及較高的基板溫度有利於薄膜以二維方式成長,減少表面的粗糙度;入射角度大於45度後遮蔽效應明顯,不利於薄膜表面的平坦化。由離子團束沉積製程的模擬結果可得,基板原子運動行為、力及能量的傳遞會沿著結構的滑移平面進行。由大馬士革製程的模擬結果,可發現加大入射動能以凹槽底部向上填充的方式填滿凹槽,而增加溫度則以原子擴散方式填滿凹槽。平行計算用來加大我們大馬士革製程的模擬尺寸與延長模擬時間,平行計算的結果,與較小模型比較,發現較小入射動能與較高的基板溫度將造成較明顯的尺寸效應。最後我們提出分子動力學方法的瓶頸及改進的方法,作為今後努力的方向。
This study is focused on the investigation of the physical mechanism about the nano thin film deposition using molecular dynamics and the phenomena of the size effect in molecular dynamics using parallel computing. The process parameters in the simulation are including deposition rate, incident energy, incident angle, and the substrate temperature. The simulated PVD processes contain evaporation, sputtering, ionized cluster beam deposition, and Damascene process. From the simulated results about the evaporation and the sputtering, deposition rate has no influence on the film structure in the evaporation process, but there would be an optimal range of deposition rate to obtain high quality film structure in the sputtering process; higher incident energy and substrate temperature will promote the film to grow in a two-dimensional mode and the smoother film surface will be obtained; larger incident angle encourages the self-shadowing effect, and it is not beneficial for the smoothing of the film surface. In ionized cluster beam deposition process, the transforms of the force, kinetic energy, and atom migration induced by the impact between the cluster and the substrate are along the close packed direction of the structure. In Damascene process, the trench will be filled from the bottom to the opening at higher incident energy and the void existing in the trench could be free by the atom diffusion at higher substrate temperature. The size effect in the Damascene simulation will be investigated by parallel computing. The simulation model will be enlarged and the simulation time domain will be prolonged by parallel computing. Comparing the simulated results from the smaller and the larger model, the size effect will appear obviously at smaller incident energy and the elevation of the substrate temperature. Finally, the bottlenecks of the molecular dynamics simulation will be carried out, and the state-of-the-art ways overcoming these bottlenecks are also shown to be our future works.
1. A. A. R. Elshabini and F. D. Barlow, Thin Film Technology Handbook, McGraw-Hill, New York, 1998.
2. W. N. G. Hitchon, Plasma Processes for Semiconductor Fabrication, Cambridge University Press, London, 1999.
3. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York, 1994.
4. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, New Jersey, 1998.
5. J. E. Mahan, Physical Vapor Deposition of Thin Film, John Wiley & Sons, New York, 2000.
6. J.M. Bennett, "Recent developments in surface roughness characterization", Meas. Sci. Technol. Vol. 3 (1992) 1119-1127.
7. D. Rönnow, J. Isidorsson, and G.A. Niklasson, "Surface roughness of sputtered ZrO2 films studied by atomic force microscopy and spectroscopic light scattering", Physical Review B Vol. 54 No. 4 (1996) 4021-4026.
8. Y. Tazo, and S. Miyazawa, "Extremely smooth Yba2Cu3Oy thin films grown using the reactive coevaporation technique in radical oxygen at an ultralow growth rate", Appl. Phys. Lett. Vol. 62 No. 4 (1993) 408-410.
9. M. Ye, M.P. Delplancke, J. Schroeder, R. Winand, and R. Deltour, "Preparation of extremely smooth Yba2Cu3O7- thin films on the annealed MgO substrates", Solid State Communication Vol. 103 No. 11 (1997) 645-648.
10. Z. Insepov, and I. Yamada, "Surface processing with ionized cluster beam: computer simulation", Nuclear Instruments and Methods in Physics B Vol. 153 (1999) 199-208.
11. Pablo Jensen, "Growth of nanostructures by cluster deposition: Experiments and simple models", Reviews of Modern Physics Vol. 71 No. 5 (1999) 1695-1735.
12. H. Usui, I. Yamada, and T. Takagi, "Anthracene and polyethylene thin film depositions by ionized cluster beam", J. Vac. Sci. Technol. A Vol. 4 No. 1 (1986) 52-60.
13. T. Takagi, Ionized Cluster Beam Deposition and Epitaxy, Noyes, Park Ridge, New Jersy, 1988.
14. D. Bollmann, R. Merkel and A. Klumpp, "Conformal copper deposition in deep trenches", Microelectronic Engineering Vol. 37-38 (1997) 105-110.
15. K. Abe, S. Tokitoh, S. C. Chen, J. Kanamori and H. Onoda," Effect of Ti insertion between Cu and TiN layers on electromigration reliability in Cu/(Ti)/TiN/Ti layered damascene interconnects", IEEE 38th Annual International Reliability Physics Symposium, San Jose, California, 333
(2000).
16. M. Biberger, Barrier and Seed layers for sub 0.18 m Copper Technology, 9 March, Thin Film Users Group, 1999. (http://www.vacuum.org/nccavs/tfugproc.html)
17. International Technology Roadmap for Semiconductor, 1999. (http://public.itrs.net/1999_sia_roadmap/home.htm)
18. Y. Igarashi and T. Ito, "Electromigration properties of cooper-zirconium alloy interconnects", J. Vac. Sci. Tech. B Vol. 16 No. 5 (1998) 2745-2750.
19. S. W. Kang, H. U. Kim, and S. W. Rhee, "Dry etching of copper film with hexafluoroacetylacetone via oxidation process", J. Vac. Sci. Tech. B Vol. 17 (1999) 154-157.
20. C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriousu, B. A. Gurney and M. L. Williams, " Design, fabrication & testing of spin-valve read heads for high density recording ", IEEE Trans. on Magn. Vol. 30 (1994) 3801-3806.
21. Hidefumi Yamamoto and Kazuhiko Yamada, "The application of giant MR films to magnetic devices", Mater. Science and Engineering B Vol. 31 (1995) 207-211.
22. D. D. Tang, P. K. Wang, V. S. Spcriosu, S. Le and K. K. Kung, " Spin-valve RAM cell", IEEE Trans. on Magn. Vol. 31 (1995) 3206-3208.
23. K. Matsuyama, H. Asada, S. Ikeda and K. Taniguchi, " Low current magnetic-RAM memory operation with a high sensitive spin valve material", IEEE Trans. on Magn. Vol.
33 No. 5 (1997) 3283-3285.
24. A. S. Ebrahim, R. S. Huang and C. T. Kowk, "A Novel Optical Accelerometer", IEEE electron device letters Vol. 16 (1995) 166-168.
25. Jui-Chang Chuang, and Mao-Chieh Chen, "Properties of thin Ta-N films reactively sputtered on Cu/SiO2 /Si substrates", Thin Solid Films Vol. 322 (1998) 213-217.
26. K. Noda, T. Kawanabe, T. Hirata, and M. Naoe, "Optimization of sputtering conditions for protective carbon thin films of rigid disks deposited by FTS", Vacuum Vol. 51 No. 4 (1998) 735-740.
27. J. A. Thornton, in R. F. Bunshah(ed.), Deposition Technologies for Films and Coatings, Noyes, Park Ridge, 1982.
28. A. Belkind, W. Gerristead, Jr. and Z. Orban, "Deposition rate distribution in a rotatable cylindrical cathode system", Thin Solid Films 207 No. 1-2 (1992) 319-323.
29. S. Fölsh, B.C. Choi, and K.H. Rieder, "Structure of ultrathin iron films on a highly asymmetrical substrate: Fe/Cu(311)", Surface Science Vol. 377-379 (1997) 851-855.
30. P. Poulopoulos, J. Lindner, M. Farle, and K. Baberschke, "Changes of magnetic anisotropy due to roughness: A quantitative scanning tunneling microscopy study on Ni/Cu(001)", Surface Science Vol. 437 No. 3 (1999) 277-284.
31. D. Marton, and J. Fine, " Sputtering-induced surface roughness of metallic thin films", Thin Solid Films Vol. 185 (1990) 79-90.
32. J. Shen, J. Giergiel, and J. Kirschner, "Growth and morphology of Ni/Cu(100) ultrathin films: An in situ study using scanning tunneling microscopy", Physical Review B, Vol. 52 No. 11 (1995) 8454-8460.
33. M. Furukawa, Y. Yamamoto, H. Ikakura, N. Tanaka, M. Hashimoto, A. Sano, and S. Shingubara, "Surface morphologies of sputter-deposited aluminum films studied using a high-resolution phase-measuring laser interferometric microscope", Applied Optics Vol. 35 No. 4 (1996) 701-707.
34. J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New York, 1992.
35. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
36. J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, 1990.
37. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991.
38. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
39. D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, 1990.
40. W. Eckstein, Computer Simulation of Ion-Solid interaction, Springer-Verlag, Berlin, 1991.
41. M. P. Allen et al., Computer Simulation in Chemical Physics, Series C: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, 1992.
42. M. Meyer et al., Computer Simulation in Material Science, Series E: Applied Sciences Vol. 205, Kluwer Academic, Dordrecht, 1991.
43. G. H. Gilmer, M. H. Grabow and A. F. Bakker, "Modeling of epitaxial growth", Material Science and Engineering B Vol. 6 (1990) 101-112.
44. C. M. Gilmore and J. A. Sprague, "Molecular-dynamics simulation of the energetic deposition of Ag thin films", Physical Review B Vol. 44 No. 16 (1991) 8950-8957.
45. Y. Yue, Y. K. Ho, Z. Y. Pan, R. W. Lee, Z. Y. Man and J. Xie, "Enhanced atomic mobility in pulsed laser deposition of Cu films", Physics Letters A Vol. 235 (1997) 267-270.
46. M. Schneider, A. Rahman and Ivan K. Schuller, "Role of relaxation in epitaxial growth: A molecular dynamics study", Physical Review letters Vol. 55 No. 6 (1985) 604-606.
47. J.W. Evans, D.E. Sanders, P.A. Thiel, and A.E. DePristo, "Low-temperature epitaxial growth of thin metal films", Physical Review B Vol. 41 No. 8 (1989) 5410-5413.
48. R. W. Smith, and D. J. Srolovitz, "Void formation during film growth: A molecular dynamics simulation study", J. Appl. Phys. Vol. 79 Issue 3 (1996) 1448-1457.
49. L. Dong, R. W. Smith, and D. J. Srolovitz, "A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition", J. Appl. Phys. Vol. 80 No. 10 (1996) 5682-5690.
50. X. W. Zhou, R, A. Johnson, and H. N. G. Wadley, "Molecular dynamics study of nickel vapor deposition: Temperature, incident angle, and adatom energy effects", Acta Mater. Vol. 45 No. 4 (1997) 1513-1524.
51. X.W. Zhou, and H.N.G. Wadly, "Hyperthermal vapor deposition of copper: reflection and resputtering effects", Surface Science Vol. 431 (1999) 58-73.
52. M. Moseler, O. Rattunde, J Nordiek, and H. Haberland, "The growth dynamics of energetic cluster impact films", Comp. Mat. Sci. Vol. 10 (1998) 452-456.
53. L. He, Z. Xia, H. Zhang, J. Feng, and Y. Lu, "Deposition of an energetic Al cluster on Si(111) substrate: a molecular dynamics simulation", Modelling Simul. Mater. Sci. Eng. Vol. 6 (1998) 709-716.
54. J. Q. Xie, J.Y. Feng, and H. W. Lu, "Molecular-dynamics simulation of low-temperature growth of silicon films by cluster deposition", Modelling Simul. Mater. Sci. Eng. Vol. 7 (1999) 289-295.
55. R. Lee, Z. Pan, and Y. Ho, "Molecular-dynamics simulations of slow copper cluster deposition", Physical Review B Vol. 53 No. 7 (1996) 4156-4161.
56. Yoko Saito, Shigeki Hirasawa, Tatsuyuki Saito, Hiroki Nezu, Hizuru Yamaguchi and Nobuo Owada, "Molecular dynamics analysis of reflow process of sputtered aluminum films", IEEE Trans. Semiconduct. Manufact.Vol. 10 No. 1 (1997) 131-136.
57. 張西亞、黃國展等著,"個人電腦叢集之科學計算應用",物理雙月刊(二十一卷三期) p366-378,1999年6月。
58. 曾耀寰、謝寶慶,透視Linux的安裝與管理,學貫行銷股份有限公司。
59. S. Plimpton,"Computational limits of classical molecular dynamics simulations", Computational Materials Science Vol. 4 (1995) 361-364.
60. S. Plimpton,"Fast parallel algorithm for short-range molecular dynamics", Journal of Computational Physics Vol. 117 (1995) 1-19.
61. V. E. Taylor, R. L. Stevens, and K. E. Arnold, Proceedings of Fifth Symposium on the Frontiers of Massively Parallel Computation (1994) 156.
62. R. Murty, and D. Okunbor, "Efficient parallel algorithms for molecular dynamics simulations", Parallel Computing Vol. 25 (1999) 217-230.
63. S. G. Srinivasan, I. Ashok, Hannes Jônsson, G. Kalonji, and J. Zahorjan, "Dynamic-domain-decomposition parallel molecular dynamics", Computer Physics Communications Vol. 102 (1997) 44-58.
64. S. Plimpton, and B. A. Hendrickson, "Materials Theory and Modeling", MRS proceeding Vol. 291 (1993) 37-42.
65. C. F. Cornwell, and L. T. Wille, "Parallel molecular dynamics simulations for short-ranged many-body potential", Computer Physics Communications Vol. 128 (2000) 477-491.
66. Y. Komeiji, M. Haraguchi, and U. Nagashima, "Parallel molecular dynamics simulation of a protein", Parallel Computing Vol. 27 (2001) 977-987.
67. H. Schwichtenberg, G. Winter, and H. Wallmeier, "Acceleration of molecular mechanic simulation by parallelization and fast multipole techniques", Parallel Computing Vol. 25 (1999) 535-546.
68. M. Surridge, D. J. Tildesley, Y. C. Kong, and D. B. Adolf, "A parallel molecular dynamics simulation code for dialkyl cationic surfactants", Parallel Computing Vol. 22 (1996) 1053-1071.
69. S. Plimpton and B. Hendrickson, "A new parallel method for molecular dynamics simulation of macromolecular system", J. of Computational Chemistry Vol. 17 (1996) 326-337.
70. S. Erkoc, "Annual Reviews of Computational IX", World Scientific Publishing Company, Singapore, (2001) 1-103.
71. H. Rafii-Tabar, "Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations", Physics Reports Vol. 325 (2000) 239-310.
72. R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London, 1997.
73. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London, 1987.
74. P. L. Huyskens et al., Intermolecular Forces, Springer-Verlag, Berlin, 1991.
75. M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces between Molecules, Oxford University Press, London, 1986.
76. K. Maekawa, and A. Itoh, "Friction and tool wear in nano-scale machining- a molecular dynamics approach", Wear Vol. 188 (1995) 115-122.
77. J. C. Slater, and G. F. Koster, "Simplified LCAO method for periodic potential problem", Physical Review Vol. 94 No. 6 (1954) 1498-1524.
78. C. Kittle, Introduction to Solid State Physics, John Wiley & Sons, New York, 1996.
79. 劉東昇編譯,化學量子力學,徐氏基金會出版,台北,1992。
80. 江元生,結構化學,五南圖書出版,台北,1998。
81. L. Colombo, "A source code for tight-binding molecular dynamics simulation", Computational Materials Science Vol.
12 (1998) 278-287.
82. J. Z. H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific Publishing Company, Singapore, 1999.
83. 江逢霖,量子化學原理,復旦大學出版社,上海,1990。
84. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, "A transferable tight-binding potential for carbon", J. Phys.: Condens. Matter Vol. 4 (1992) 6047-6054.
85. I. Kwon, R. Biswas, C. Z. Wang, K. M. Ho, and M. Soukoulis, "Transferable tight-binding models for silicon", Physical Review B Vol. 49 No. 11 (1994) 7242-7250.
86. R. P. Gupta, "Lattice relaxation at a metal surface", Physical Review B Vol. 23 No. 12 (1981) 6265-6270.
87. D. Tománek, S. Mukherjee, and K. H. Bennemann, "Simple theory for the electronic and atomic structure of small clusters", Physical Review B Vol. 28 No. 2 (1983) 665-673.
88. D. Tománek, A. A. Aligia, and C. A. Balseiro, "Calculation of elastic strain and electronic effects on surface segregation", Physical Review B Vol. 32 No. 8 (1985) 5051-5056.
89. W. Zhong, Y. S. Li, and D. Tománek, "Effect of adsorbates on surface phonon modes: H on Pd(001) and Pd(110)", Physical Review B Vol. 44 No. 23 (1991) 13053-13062.
90. M. M. Sigalas, and D. A. Papaconstantopoulos, "Transferable total-energy parametertrizations for metals: Application to elastic-constant determination", Physical Review B Vol. 49 No. 3 (1994) 1574-1579.
91. G. C. Kallinteris, N. I. Papanicolaou, G. A. Evangelakis, and D. A. Papaconstantopoulos, "Tight-binding interatomic based on total-energy calculation: Application to noble metals using molecular-dynamics simulation", Physical Review B Vol. 55 No. 4 (1997) 2150-2156.
92. V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model", Philosophical Magazine A Vol. 59 No. 2 (1988) 321-336.
93. F. Cleri, and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B Vol. 48 No. 1 (1993) 22-33.
94. M. S. Daw, and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev.B Vol. 50 (1984) 6443–6453.
95. S. M. Foiles, M. I. Baskes, and M. S. Daw, "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Phys. Rev. B Vol. 33 (1986) 7983-7991.
96. M. Hou, "A molecular dynamics evidence for enhanced cluster beam epitajy", Nuclear Instruments and Methods in Physics Research B Vol. 135 (1998) 501-506.
97. M. Hou, and Z. Y. Pan, "Cascade statistics in the binary collision approximation and in full molecular dynamics", Nuclear Instruments and Methods in Physics Research B Vol. 102 (1995) 93-102.
98. G. Mazzone et al., "Molecular-dynamics calculations of thermodynamic properties of metastable alloys", Phy. Rev. B Vol. 55 (1997) 837-842.
99. I. Meunier, G. Tréglia, B. Legrand, R. Tétot, B. Aufray, and J. M. Gay, "Molecular dynamics simulations for the Ag/Cu (111) system: from segregated to constitutive interfacial vacancies", Applied Surface Science Vol. 162-163 (2000) 219-226.
100. H. J. C. Berendsen, M. P. J. Postma, W. F. van Gunsteren, A. Dinola, and J. R. haak, "Molecular dynamics with coupling to an external bath", J. Chem. Phys. Vol. 81 (1984) 3684-3690.
101. B.A. Movchan and A.V. Demchishin, Fiz. Metal Metalloved Vol. 28 No. 4 (1969) 653.
102. J.A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", J.Vac. Sci. Technol. Vol. 11 No. 4 (1974) 666-670.
103. Y. Qiang, Y. Thurner, Th. Reiners, O. Rattunde, and H. Haberland, "Hard coatings (TiN, TixAl1-xN) deposited at room temperature by energetic cluster impact", Surface and Coating Technology Vol. 100-101 No. 1-3 (1998) 27-32.
104. N. Levanov, V. S. Stepanyuk, W. Hergert, O. S. Trushin, and K. Kokko, "Molecular dynamics simulation of Co thin films growth on Cu(001)", Surf. Sci. Vol. 400 (1998) 54-62.
105. L. Hansen, P. Stoltze, K. W. Jacobsen, and J. K. Nørskov, "Self-diffusion on copper surfaces", Physical Review B, Vol. 44 No. 12 (1991) 6523-6526.
106. James M. Howe, Interfaces in Materials, John Wiley & Sons, New York, 1997.
107. John B. Hudson, Surface Science, John Wiley & Sons, New York, 1998.
108. I. Kwon, R. Biswas, G. S. Grest and C. M. Soukoulis, "Molecular-dynamics simulation of amorphous and epitaxial Si film growth on Si(111)", Phys. Rev. B Vol. 41 (1990) 3678-3687.
109. A. F. Voter, "Classically exact overlayer dynamics: Diffusion of rhodium cluster on Rh(100)", Physical Review B Vol. 34 No. 10 (1986) 6819-6829.
110. A. F. Voter, "A method for accelerating the molecular dynamics simulation of infrequent events", J. Chem. Phys. Vol. 106 No. 11 (1997) 4665-4677.
111. A. F. Voter, "Hyperdynamics: Accelerated molecular dynamics of infrequent events", Physical Review Letters Vol. 78 No. 20 (1997) 3908-3911.
112. M. Shibahara, and S. Kotake, "Quantum molecular dynamics study on light-to-heat absorption mechanism: two metallic atom system", Int. J. Heat Mass Transfer Vol. 40 No. 13 (1997) 3209-3222.
113. M. Shiga, M. Tachikawa, and S. Miura, "Ab inito molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics", Chemical Physics Letters Vol. 332 (2000) 396-402.
114. O. Knospe, and P. Jungwirth, "Electron photodetachment in : Quantum molecular dynamics with a non-empirical, 'on-the-fly' calculated potential", Chemical Physics Letters Vol. 317 (2000) 529-534.
115. M. Pavese, S. Jang, and G. A. Voth, "Centroid molecular dynamics: A quantum dynamics method suitable for the parallel computer", Parallel Computing Vol. 26 (2000) 1025-1041.
116. L. Wang, "A rigorous quantum molecular dynamics study of a collinear A + BC AB + C reaction", Chemical Physics Vol. 237 (1998) 305-314.
117. J. Ka, and S. Shin, "Dynamics of molecular ion ( ) in condensed phases: hybrid quantum/classical method for a linear chain model", Chemical Physics Letters Vol. 269 (1997) 227-234.