簡易檢索 / 詳目顯示

研究生: 曾亭翰
Tseng, Ting-Han
論文名稱: 穩定全疏滑溜表面之開發
Development of Stable Slippery Surfaces with Omniphobicity
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 犧牲粒子可調控黏著力超疏水滑溜全疏爬針現象
外文關鍵詞: Sacrificial particle, Tunable adhesion, Superhydrophobicity, Slippery, Omniphobicity, Needle climbing phenomenon
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於發展仿生學,製備出具備如同蓮葉般超疏水、玫瑰花瓣表面般疏水並具高黏著力及豬籠草唇上滑溜特性的表面。為了達到表面的疏水性,選用鐵氟龍奈米膠體粒子作為主要材料,以聚苯乙烯-二乙烯苯共聚物作為犧牲粒子來創造粗糙度,利用極低表面張力的Fomblin® Y作為製備液膜的注入液,發展出一系列的仿生表面。
    研究結果顯示,利用添加不同比率犧牲粒子可以調控薄膜的黏著力,在未添加犧牲粒子的鐵氟龍薄膜及添加低犧牲粒子的粗糙鐵氟龍薄膜為一疏水且具高黏著力的表面,就如同玫瑰花瓣表面的特性;添加高比率犧牲粒子的粗糙鐵氟龍薄膜為一疏水且具及低黏著力的表面,也就是超疏水的表面,如同蓮葉表面的特性。而利用Fomblin® Y引入多孔的超疏水鐵氟龍薄膜,可以製備出滑溜薄膜,表面張力介於18.6到72.8 mN/m的測試液體都會輕易的從滑溜薄膜上滑落,具備全疏和滑溜的特性。滑溜薄膜在時間的持久性測試及剪應力抵抗性的測試下都能保有滑溜的特性,具備一定程度的穩定性。本研究將滑溜薄膜應用於解決低表面張力液體爬針的現象,藉由滑溜薄膜的全疏特性,可以成功抑制液體爬上針頭表面。

    This work aims at developing biomimics. Surfaces with superhydrophobicity from lotus leaf, hydrophobicity with high adhesion from rose petal and slippery from nepenthes’ peristome were fabricated. In order to achieve hydrophobicity, Teflon nanoparticle was chosen as material, and roughness was created by sacrificial particle, PSDVB. Liquid film was fabricated by infusing lubricating liquid, fomblin® Y, which has extremely low surface tension. A series of biomimic surfaces were developed.
    The results showed films with tunable adhesion can be created by adding different ratio of sacrificial particle. Teflon film and rough Teflon films at low ratio of sacrificial particle are hydrophobic and high adhesive surfaces; rough Teflon films at middle ratio of sacrificial particle are hydrophobic and middle adhesive surfaces; rough Teflon films at high ratio of sacrificial particle are superhydrophobic surfaces. The slippery surface can be fabricated by infusing fomblin® Y into superhydrophobic Teflon surface. Test liquids with surface tension from 18.6 to 72.8 mN/m can slip easily from slippery film, which has omniphobicity and slippery property. In persistence test for time and resistance test for shear force, the slippery property of slippery film can be kept. In this work, slippery film also applied in solving needle climbing phenomenon. Lower surface tension liquids climbing on needle surface can be inhibited by omniphobicity of slippery film.

    摘要 I Abstract II 延伸摘要 IV 致謝 XIII 目錄 XIV 圖目錄 XIX 表目錄 XXIV 第一章 緒論 1 1.1 研究動機與研究目的 2 第二章 文獻回顧 3 2.1 蓮花效應 (Lotus effect) 3 2.2 超疏水理論 7 2.2.1 楊氏(Young)方程式 9 2.2.2 溫佐(Wenzel)方程式 10 2.2.3 卡西-巴斯特(Cassie and Baxter)方程式 11 2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 12 2.3 超疏水表面製備方法 14 2.3.1 先創造粗糙結構再進行疏水改質 14 2.3.2 在疏水材料表面上創造粗糙結構 18 2.3.3 創造具有低液/固接觸面積的規則階層式結構表面 21 2.4 液固黏著性質 23 2.4.1 表面化學特性對液固黏著力之影響 24 2.4.2 表面物理結構對黏著力之影響 27 2.5 滑溜表面 31 2.5.1 液體注入多孔結構 32 第三章 實驗 34 3.1 實驗藥品 34 3.2 儀器設備及裝置 36 3.2.1 Milli-Q超純水系統 36 3.2.2 刮刀塗佈機 (Doctor-blade) 37 3.2.3 表面輪廓儀(Alpha step) 38 3.2.4 超音波震盪器 (Ultrasonic cleaner) 38 3.2.5 箱型高溫爐 (Muffle furnace) 39 3.2.6 熱重分析儀 (TGA) 40 3.2.7 掃瞄式電子顯微鏡 (SEM) 41 3.2.8 接觸角分析儀 (Contact angle measure analyzer) 42 3.2.9 動態接觸角分析儀 44 3.2.10 旋轉塗佈機(Laurell, Model WS-400-6NPP) 47 3.3 實驗方法 48 3.3.1 玻璃基板的前置清洗流程及吹乾使用 48 3.3.2 鐵氟龍-聚苯乙烯/二乙烯苯共聚物分散液配製 48 3.3.3 鐵氟龍與聚苯乙烯-二乙烯苯共聚物漿料配製 49 3.3.4 利用刮刀塗佈法製備鐵氟龍薄膜 49 3.3.5 以全氟潤滑油注入超疏水鐵氟龍薄膜製備滑溜薄膜 50 3.4 超疏水鐵氟龍薄膜及滑溜薄膜塗佈針頭之製備 51 第四章 結果與討論 52 4.1 鐵氟龍薄膜 53 4.1.1 鐵氟龍薄膜表面形態 53 4.1.2 鐵氟龍薄膜表面粗糙度 54 4.1.3 水滴在鐵氟龍薄膜上的潤濕行為 55 4.2 粗糙鐵氟龍薄膜 57 4.2.1 在尚未鍛燒前,薄膜的表面型態 57 4.2.2 在高溫鍛燒後,粗糙鐵氟龍薄膜表面形態 58 4.2.3 粗糙鐵氟龍薄膜表面粗糙度 61 4.2.4 水滴在粗糙鐵氟龍薄膜上的潤濕行為 66 4.2.5 油滴在粗糙鐵氟龍薄膜上的潤濕行為 71 4.2.6 酒精水溶液在粗糙鐵氟龍薄膜上的潤濕行為 74 4.3 滑溜薄膜 75 4.3.1 潤滑液體的選擇 75 4.3.2 水滴在滑溜薄膜上的潤濕行為 76 4.3.3 油滴在滑溜薄膜上的潤濕行為 78 4.3.4 酒精水溶液在滑溜薄膜上的潤濕行為 82 4.3.5 滑溜薄膜全疏特性的穩定性 83 4.3.6 潤滑薄膜全疏特性對剪應力的抵抗性 90 4.3.7 滑溜薄膜在不鏽鋼針頭表面應用來避免爬針行為 92 第五章 結論 96 5.1 結論 96 5.2 建議 98 第六章 參考文獻 99 自述 106

    1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1-8, 1997.
    2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667-677, 1997.
    3. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988-994, 1936.
    4. Cassie, A. B. D.; Baxte, S., Wettability of Porous Surfaces. Transactions of the Faraday Society , 40, 546-551, 1944.
    5. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 8, 2070-2086, 2012.
    6. Bormashenko, E.; Grynyov, R.; Chaniel, G.; Taitelbaum, H.; Bormashenko, Y., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98-13, 2013.
    7. Feng, X. J.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063-3078, 2006.
    8. Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 206, 41-46, 2002.
    9. Tuteja, A.; Choi, W.; Ma M.; Mabry, J. M.; Mazzella, S. A.; Rutledge G. C.; McKinley, G. H.;Cohen R. E., Designing Superoleophobic Surfaces. Science, 318, 1618-1622, 2007.
    10. Callies M.;Quéré, D., On water repellency. Soft matter, 1, 55-61, 2005.
    11. Van der Wal, P.; Steiner, U., Super-Hydrophobic Surfaces Made from Teflon. Soft Matter, 3, 426-429, 2007.
    12. Koch, K.; Bhushan, B.; Jung, Y. C.; Barthlott, W., Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft matter, 5, 1386-1393, 2009.
    13. Zhao, N.; Xu, J.; Xie, Q.;Weng, L.; Guo, X.; Zhang, X.; Shi, L., Fabrication of Biomimetic Superhydrophobic Coating with a Micro-Nano-Binary Structure. Macromol. Rapid Commun., 26, 1075-1080, 2005.
    14. Milella, A.; Mundo, R. D.; Palumbo, F.; Favia, P.; Fracassi, F.; d’Agostino, R., Plasma Nanostructuring of Polymers Different Routes to Superhydrophobicity. Plasma Process. Polym., 6, 460-466, 2009.
    15. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D., Super-Hydrophobic Surface: From Natural to Artificia. Adv. Mater., 14, 1857-1860, 2002.
    16. D'Acunzi, M.; Mammen, L.; Singh, M.; Deng, X.; Roth, M.; Auernhammer, G. K.; Butt, H.-J.; Vollmer, D., Superhydrophobic Surfaces by Hybrid Raspberry-Like Particles. Faraday Discussions, 146, 35-48, 2010.
    17. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert O., Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 299, 1377-1380, 2003.
    18. Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F., Transparent superhydrophobic films based on silica nanoparticles. Langmuir: the ACS journal of surfaces and colloids, 23, 7293-7298, 2007.
    19. Liu, Y.; Chen, X.; Xin, J. H., Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology, 17, 3259-3263, 2006.
    20. Kato, S.; Sato, A., Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: creation of superhydrophobic surfaces. J. Mater. Chem., 22, 8613-8621, 2012.
    21. Levkin, P. A.; Svec, F.; Frechet, J. M., Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Advanced functional materials, 19, 1993-1998, 2009.
    22. Jiang, L.; Zhao, Y.; Zhai, J., A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed., 43, 4338-4341, 2004.
    23. Ogawa, K.; Soga, M.; Takada, Y.; Nakayama, I., Development of a Transparent and Ultrahydrophobic Glass Plate. Japanese Journal of Applied Physics, 32, 614-615, 1993.
    24. Li, Y.; Liu, F.; Sun, J., A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chemical communications, 2730-2732, 2009.
    25. Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D., Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science, 335, 67-70, 2012.
    26. Lee, W.; Park, B. G.; Kim, D. H.; Ahn, D. J.; Park, Y.; Lee, S. H.; Lee K. B., Nanostructure-Dependent Water-Droplet Adhesiveness Change in Superhydrophobic Anodic Aluminum Oxide Surfaces: From Highly Adhesive to Self-Cleanable. Langmuir, 26, 1412-1415, 2010.
    27. Kawai, A.; Nagata, H., Wetting Behavior of Liquid on Geometrical Rough Surface Formed by Photolithography. Jpn. J. Appl. Phys., 33, 1283-1285, 1994.
    28. Öner, D.; McCarthy, T. J., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir : the ACS journal of surfaces and colloids, 16, 7777-7782, 2000.
    29. Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto K., Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir, 18, 5818-5822, 2002.
    30. Choi1, C.-H.; Kim, C.-J., Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology, 17, 5326-5333, 2006.
    31. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal effect: a superhydrophobic state with high adhesive force. Langmuir : the ACS journal of surfaces and colloids, 24, 4114-4119, 2008.
    32. Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. The Journal of Physical Chemistry C, 114, 11509-11514, 2010.
    33. Xi, J.; Jiang, L., Biomimic Superhydrophobic Surface with High Adhesive Forces. Industrial & Engineering Chemistry Research, 47, 6354-6357, 2008.
    34. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Advanced Materials, 17, 1977-1981, 2005.
    35. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts of chemical research, 43, 368-377, 2010.
    36. Khoo, H. S.; Tseng, F. G., Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nanostructures. Nanotechnology, 19, 345603-345611, 2008.
    37. Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir: the ACS journal of surfaces and colloids, 24, 3867-3873, 2008.
    38. Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching water droplet adhesion using responsive polymer brushes. Langmuir: the ACS journal of surfaces and colloids, 26, 12377-12382, 2010.
    39. Das, A.; Schutzius, T. M.; Bayer, I. S.; Megaridis C. M., Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon, 50, 1346-1354, 2012.
    40. Park, B. G.; Lee, W.; Kim, J. S.; Lee, K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370, 15-19, 2010.
    41. Cao, L.; Gao, D., Transparent Superhydrophobic and Highly Oleophobic Coatings. Faraday Discuss, 146, 57-65, 2010.
    42. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Advanced Materials, 21, 3799-3803, 2009.
    43. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force. Small, 5, 90-94, 2009.
    44. Zhao, X. D.; Fan, H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir: the ACS journal of surfaces and colloids, 27, 3224-8, 2011.
    45. M., N. V.; Birjandi, F. C.; Sargolzaei J., Super-non-wettable surfaces: A review. Colloids and Surfaces A: Physicochem. Eng. Aspects, 448, 93-106, 2014.
    46. Lee, S. G.; Ham, D. S.; Lee, D. Y.; Bong, H.; Cho K., Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica−Fluoropolymer Hybrid Nanoparticles. Langmuir, 29, 15051-15057, 2013.
    47. Hsieh, C.-T.; Wu, F.-L.; Chen, W.-Y., Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Materials Chemistry and Physics, 212, 14-21, 2010.
    48. Law K.-Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett., 5, 686-688, 2014.
    49. Cao, L.; Hu, H.-H. Gao, Di., Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials. Langmuir, 23, 4310-4314, 2007.
    50. Lin, S.-H.; Wu, Y.-N.; Lin, Y.-H.; Yang Y.-M., Design and fabrication of antireflective nanoparticulate thin films with superhydrophilic self-cleaning properties on glass substrate. Journal of the Taiwan Institute of Chemical Engineers, 42, 852-859, 2011.
    51. Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin Y., Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Applied Physics Letters, 101, 033701, 2012.
    52. Lin, Y.-H.; Su, K.-L. Tsai, P.-S.; Chuang, F.-L.; Yang, Y.-M., Fabrication and characterization of transparent superhydrophilic/superhydrophobic silica nanoparticulate thin films. Thin Solid Films, 519, 5450–5455, 2011.
    53. Bohn H.-F.; Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS, 101, 14138-14143, 2004.
    54. Wang, L.; Zhou, Q., Friction Force of Locust Locusta migratoria manilensis (Orthoptera, Locustidae) on Slippery Zones of Pitchers from Four Nepenthes Species. Tribol Lett, 44, 345–353, 2011.
    55. Wong, T.-S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.;Hatton, B. D.; Grinthal A.; Aizenberg, J., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443-447, 2011.
    56. Yao, X.; Hu, Y.; Grinthal, A.; Wong, T.-S.; Mahadevan L.; Aizenberg J., Adaptive fluid-infused porous films with tunable transparency and wettability, Nature Materials, 12, 529-534, 2013.
    57. Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang Q., Ice-phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane, ACS Appl. Mater. Interfaces, 5, 4053−4062, 2013.
    58. Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang L., Robust Prototypical Anti-icing Coatings with a Self-lubricating Liquid Water Layer between Ice and Substrate, ACS Appl. Mater. Interfaces, 5, 4026−4030, 2013.
    59. Lafuma, A.; Quéré, D., Slippery pre-suffused surfaces. EPL, 96, 56001, 2011.
    60. Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg J., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates, Nano Lett., 13, 1793−1799, 2013.
    61. Jenner E.; D'Urso B., Wetting states on structured immiscible liquid coated surfaces. Applied Physics Letters, 103, 251606, 2013
    62. Li, J.; Kleintschek, T.; Rieder, A.; Cheng, Y.; Baumbach, T.; Obst, U.; Schwartz, T.; Levkin P. A., Hydrophobic Liquid-Infused Porous Polymer Surfaces for Antibacterial Applications, ACS Appl. Mater. Interfaces , 5, 6704−6711, 2013.
    63. Epstein, A. K.; Wong, T.-S.; Belisle, R. A.; Boggs, E. M.; Aizenberg J., Liquid-infused structured surfaces with exceptional anti-biofouling performance, PNAS, 109, 13182–13187, 2012.
    64. Zhang , J.; Wang, A.; Seeger, S., Nepenthes Pitcher Inspired Anti-Wetting Silicone Nanofi laments Coatings: Preparation, Unique Anti-Wetting and Self-Cleaning Behaviors, Adv. Funct. Mater., 24, 1074–1080, 2014.
    65. 黃怡欣. 超疏水表面的創造及其應用之研究 - 犧牲粒子的運用.國立成功大學, 台灣, 台南, 2010.
    66. 李政恩. 可調控潤濕性及黏著性的透明表面之設計與製備. 國立成功大學, 台灣, 台南, 2012.
    67. 呂惟皓. 可調控潤濕性及黏著性的液胞強化奈米粒子薄膜之製備. 國立成功大學, 台灣, 台南, 2013.
    68. Yang Y.-M., Self-Cleaning Materials and Surfaces: A Nanotechnology Approach: Chapter 10 Fabrication of Antireflective Self-Cleaning Surfaces Using Layer-by-Layer Assembly Techniques, 2013.

    下載圖示 校內:2016-08-19公開
    校外:2016-08-19公開
    QR CODE