| 研究生: |
胡舉軍 Hu, Jeu-Jiun |
|---|---|
| 論文名稱: |
旋翼與振翅翼之數值研究 Numerical Studies on Flows of Rotor and Flapping Wing |
| 指導教授: |
林三益
Lin, Sam-Yih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 平行計算 、旋翼 、振翅翼 、個人電腦叢集 |
| 外文關鍵詞: | PC Cluster, Rotor, Flapping Wing, Parallel Computing |
| 相關次數: | 點閱:127 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的目的是發展一數值算則來求解尤拉/那威爾史托克(Euler/Navier-Stokes)方程式。數值方法是以有限體積法採用三階上風外插與限制函數來計算方程式中的對流項,黏滯項則採用二階的有限體積法。時間的積分則採用DDADI數值法來處理。此外,為了加速數值上的收斂性,此數值算則引入隱式殘值平滑法,此上風數值方法為一MUSCL型式之算則。對於較高雷諾數的流場而言,則採用Boldwin-Lomax代數紊流模式來求解。
首先,計算一盤旋之轉子流場。數值計算中採用一個兩葉片其翼剖面為NACA0012外型,格點拓樸為O-O型式來模擬無升力有升力之物理問題。兩種不同數學之表示式也分別介紹與討論:一種以相對速度作為流場變數來計算,另一種則是以絕對速度來代表計算時所採用的守恆變量。計算結果與實驗或他人所發表的數值結果相比,非常不錯。比較以尤拉方程式與那威爾史托克的計算結果而言,由於黏滯性的引響,導致過渡預測震波的位置。翼尖渦流的結構由於較粗格點的關係而導致無法準確的模擬之。此外,此計算也採用平行計算,其環境為8台個人電腦並採用訊息傳遞 (MPI) 之平行程式函式庫,而建構出一平行電腦叢集。測試結果顯示,對8台電腦之平行電腦叢集而言,其8台電腦與單一電腦執行所需的時間相較,其平行效率達7.24。
接著研究振翅翼的空間動力特性,以不同的振翅頻率、流場攻角、振翅振幅和振翅角來作量化的研究與探討。對作上下振動的振翅運動而言,推力與流場攻角無關,但卻與振翅頻率呈線性關係。升力在一個週期內隨時間變化的分布,將隨著流場攻角的增加而呈線性向上平移。
對作上下振動並藕合俯仰動作的振翅運動而言,改變俯仰運動與上下運動之相位角來說,最大推進效率產生在其相位偏移角為90度時,但此時的平均推力則較小。振翅流場的視覺化結果顯示,流體流經振翅翼後將會產生順時針與反時針之渦流結構,其旋轉方式與一般鈍型體所產生的渦流結構不同。在高振翅頻率與高雷諾數的條件下,流體與機翼表面會發生分離的現象。最後模擬三維有限翼之振翅問題,翼剖面同為NACA0014翼型。結果顯示,翼尖將捲起渦流並往下游傳遞並逐漸消散。翼尖捲起渦流結構使得氣動力係數與二維結果比較,其值較小。
A numerical method is developed to solve the Euler/Navier-Stokes equations for investigating the flowfileds of the hovering rotors and flapping wings. It uses a third-order modified Osher-Chakravarthy (MOC) upwind finite-volume scheme for the convective terms and a second-order central finite-volume scheme for the viscous terms. A Diagonal Dominant Alternating Direction Implicit scheme (DDADI) coupling with an implicit residual smoothing is used for the time integration to achieve fast convergence of the proposed scheme. The upwind scheme is a MUSCL-type scheme (monotonic upwind-centered scheme for conservation laws). The Baldwin-Lomax algebraic turbulence model is applied to calculate the turbulent flows at high Reynolds numbers.
First, the hovering rotor flowfields are investigated. The numerical simulations are performed for a two-blade rotor on periodic O-O grid topologies for non-lifting and lifting rotors. Two types of numerical formulas that use the relative and absolute velocity as flow variables in a non-inertial reference frames are introduced and discussed. Computational solutions show good agreement with experimental data. The results of Euler calculations in comparison with the Navier-Stokes solutions show that the captured vortex structure is non-physical due to the coarse grid and over predicts the shock wave position due to the viscous effect. The parallel computing technique is also used. The 8-nodes PC cluster environments with MPI are used to demonstrate the parallel computing. It is shown that the efficiency is about 7.24 compared to the single node at IAA and about 3.93 respects to the 2-nodes at NCHC.
Then the aerodynamic performances of the flapping wings are studied. Quantitative understanding the effects of the plunging frequency, mean angle of attack, plunging amplitude and pitching angle are calculated. It is found that the mean thrust output and propulsion efficiency are independent of the mean angle of attack but dependent upon the reduced frequency. The mean lift is linear shift with increasing the mean angle of attack.
For the plunging/pitching motions, maximum propulsion occurred with the phase shift of 90 degree. Simultaneously, thrust output is at a minimum one. The visualization for the particle traces shows the shedding Kármán vortex streets rotating in clockwise and counterclockwise. The flows at high Reynolds numbers with the higher reduced frequency are separated. The three-dimensional Euler/Navier-Stokes simulations have been carried out for a rectangular wing in plunging and twisting motion. The tip vortices at different planes downstream the airfoils are shown in diagram. The roll-up tip vortices are formed traveling downstream and diminishing.
1.Agarwal, R. K., 1987, “Euler Calculations for Flowfield of a Helicopter Rotor in Hover,” Journal of Aircraft, Vol. 24, No. 4., pp. 231-238.
2.Allen, C. B. and Jones, D. P., 1999, ‘Parallel Implementation of An Upwin Euler Solver for Hovering Rotor Flows,” The Aeronautical J., March, pp. 129-138.
3.Allen, C. B., 2001, “Mutigrid Acceleration of An Upwin Euler Solver for Hovering Rotor Flows,” The Aeronautical J., Sep. pp. 517-524.
4.Baldwin, B. S. and Lomax, H., 1978, “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper 78-0527.
5.Bardina, J. and Lombar, C. K., 1987, “Three Dimensional Hyperbolic Flow Simulations with the CSCM Implicit Upwind Navier-Stokes Method,” AIAA Paper 87-1114.
6.Barton, J. T., and Bulliam, T. H. (1984), “Airfoil Computation at High Angles of Attack, Invscid and Viscous Phenomena,” AIAA Paper 84-0524.
7.Beam, R. M., and Warming, R. F., 1978 “An Implicit Factored Scheme for the Compressible Navier-Stokes Equations,” AIAA Journal, Vol. 16, pp. 393-402.
8.Cardonna, F. X. , and Tung, C., 1981, “Experimental and Analytical Studies of Model Helicopter Rotor in Hover, ”NASA TM-81232, Sep.
9.Cebeci, T. and Bradshaw, P., 1984, “Analysis of Turbulent Boundary Layers,” New York: Academic Press.
10.Cebeci, T., Hirsh, R.S., Keller, H. B., and Williams, P. G., 1981, “Studies of numerical methods for the plane Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 27, pp. 13-44.
11.Chakraverthy S. R., 1982, “Euler Equation, Implicit Schemes and Implicit Boundary Conditions,” AIAA Paper.
12.Chima, R. V. and Johnson, G. M., 1985, “Efficient Solution of the Euler and Navier-Stokes Equations with a Vectorized Multiple-Grid Algorithm,” AIAA Journal, Vol. 23, pp. 23-32.
13.DeLaurier, J. D., 1993, ” An Aerodynamic Model for Flapping Wing Flight,” Aeronautical Journal, pp. 125-130, April.
14.Dick, E., 1988, “A Flux Vector Splitting Method for Steady Navier-Stokes Equation,” Int. Journal Numerical Methods Fluids, Vol. 8, pp. 317-326.
15.Dickinson, M. H., Lehmann, F. O. and Sane, S. P., 1999, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, Vol. 284, pp. 1954-1960.
16.Farassat, F. and Muers, M. K., 1988, “Extension pf Kirchhoff’s formula to Radiation from Moving Surfaces,” Journal of Sound and Vibration, Vol 123. No. 3, pp.451-460.
17.Hall , K. C. and Hall, S. R., 1996, “Minimum Induced Power Requirements for Flapping Flight,” J. F. M., 323, pp. 285-315.
18.Hall, Kenneth, C. and Pigott, Steven A., 1998, “Power requirements for Large-Amplitude Flapping Flight,” Journal of Aircraft, Vol. 35, No. 3, pp. 352-361, May-June.
19.http://www.catskill .net/evolution/flight/birdsfly/birdsfly.htm
20.Hwang, B. Y., 1994, ”Numerical Investigations On Wing-winglet Aerodynamic Performance”, Master Thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, R.O.C.
21.Jameson A., Schmidt, W., and Turkel, E., 1981, “Numerical Simulation of the Euler Equations by finite Volume Methods Using Runge-Kutta Time Stepping Schemes,” AIAA Paper 81-1259.
22.Jameson, A. and Yoon, S., 1987, “Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations,” AIAA Journal, Vol. 25, pp. 929-935.
23.Jameson, A., 1985, “Multigrid Algorithms for Compressible Flow Calculations,” Multigrid Method II, Lecture Notes in Math., Vol. 1228, pp.166.
24.Jones, K.D., Dohring, C.M. and Platzer, M.F., 1998, "An Experimental and Computational Investigation Of the Knoller-Betz Effect," AIAA Journal, Vol. 36, No. 7, pp. 1240-1246.
25.Jones, K. D., and Plartzer, M. F., “Numerical Compilation of Flapping-Wing Propulsion and Power Extraction”, AIAA Paper 97-0826
26.Jones, K. D., B., M., Mahmoud, O., Pollard, S. J., Platzer, M. F., 2002, “Numerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect,” AIAA Paper, 2002-0866.
27.Jones, K. D., Castro, B., M., Mahmoud, O., Pollard, S. J., Platzer, M. F., Neff, M. F., Gonet, K. and Hummel, D., 2002, “A collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion,” AIAA Paper 2002-0706.
28.Jones, K. D., Dohring, C. M. and Plartzer, M. F., 1998, “Wake Structures behind plunging Airfoils: A Comparison of numerical and Experimental Results”, AIAA Paper 96-0078.
29.Jones, K. D., Duggan, S. J. and Plartzer, M. F., 2001, “Flapping-Wing propulsion For a Micro Air Vehicle,” AIAA Paper, 2001-0126.
30.Jones, K. D., Lai, J. C. S., Tuncer, I. H. and Plartzer, M. F., 2000, “Computational and Experimental Investigation of Flapping-Foil propulsion”, 1st International Symposium on Aqua Bio-Mechanisms / International Seminar on Aqua Bio-Mechanisms, Tokai University Pacific Center, Honolulu, Hawaii, August 27-30.
31.Jorgenson P. and Chima, R., 1989, “ An Unconditional Stable Runge-Kutta Method for Unsteady Flows,” AIAA Papers 89-0205.
32.Kamakoti, R., Berg, M., Ljungqvist, D. and Shyy, W., 2000, “a computational Study for Biological Flapping Wing Flight,” Transactions of the Aeronautical Society of the Republic of China, Vol. 32, No. 4, pp.265-279.
33.Klopfer G. H., Hung C. M., Van der Wijngaart R. F., and Onufer J. T., 1998, “A Diagonalized Diagonal Dominant Scheme and Subiteration Correction,”, AIAA paper 98-2824.
34.Klopfer, G. H. and Yoon, S., 1993, “Multizonal Navier-Stokes Code with the LU-SGS Scheme,” AIAA Paper 93-2965.
35.Lai, J. C. S., Platzer, M. F., 1999, “Jet Characteristics of a Plunging Airfoil,” AIAA Journal, Vol. 37, No. 12, December, pp1529-1537.
36.Lighthill, Sir, J., 1990, “The Inaugural Goldstein Memorial Lecture-Some Challenging New Applications for Basic Mathematical Methods in the Mechanics of Fluids that were Originally Pursued with Aeronautical Aims,” Aeronautical Journal, pp.41-52, February.
37.Lin, S. Y. , and Chin, Y. S., 1995, “Comparison of Higher Resolution Euler Schemes for Aeroacoustic Computations,” AIAA Journal, Vol. 33, No. 2, pp. 237-245.
38.Liu H. and Kawachi K., 1998, “A Numerical Study of Insect Flight,” Journal of Computational Physics, Vol. 146, pp.124-156.
39.MacCormack, R. W., 1997 “ A New Implicit Algorithm for Fluid Flow,” AIAA Paper CP-97-2100.
40.Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, 1998, “MPI-The Complete Reference: Volume 1,” The MPI core, second edition.
41.Neff, M. F., and Hummel, D., 2000, “Euler Solutions for A Finite-Span Flapping Wing,” Conference on Fixed, Flapping and Rotary Wing Vehicles at very low Reynolds Numbers,. 5th-7th.
42.Obayashi, S. and Kuwahara, K., 1984, “LU Factorization of an Implicit Scheme for the Compressible Navier-Stokes Equations,” AIAA paper 84-1670.
43.Obayashi, S., 1991, “Freestream Capturing for Moving Coordinates in Three Dimensions,” AIAA Journal, Vol. 30, No. 4, pp.1125-1128.
44.Osher S. and Chakraverthy, S., 1985, “Very High Order Accurate TVD Schemes,” ICASE Report No. 84-44 1984.
45.Pan, D. and Chakravarthy, S. R., 1989, “Upwind Formulation for Incompressible Flows,” AIAA Paper 89-0122.
46.Peyet, R. and Taylor, T. D., 1983, “Computational Methods Method for Fluid Flow,”, New York: Springer Verlag.
47.Plartzer, M. F., and Jones, K. D., 2000, ”The Unsteady Aerodynamics of Flapping-Foil Propellers,” 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Ecole Centrale de Lyon, Lyon, France, September 4-8.
48.Pulliam,T. H. and Chaussee, D. D., 1981, “A Diagonal Form of an Implicit proximation Factorization Algorithm,” Journal of Computational Physics, Vol. 39, pp. 347-363.
49.Ramamurti, R. and Sandberg, W., 2001, “Computational Study of 3-D Flapping Foil Flows,” AIAA Paper2001-605.
50.Ramamurti, R. and Sandberg, W., 2001, “Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver,” AIAA Journal, Vol. 39, No. 2, pp. 253-260, February.
51.Rayner J. M. V., and Goedon, R., “Visualization and Modelling of the Wakes of Flying Birds,” Visualization and modelling of the wakes of flying birds,” In: Biona Report. 13, Motion Systems ed. R. Blickham, A. Wisser & W. Nachtigall. Jena: Gustav Fischer Verlag pp.165-73. BWEB:R42171
52.Rieger, H. and Jameson, A., 1988, “Solution of the Three-dimensional Compressible Euler and Navier-Stokes Equation by an Implicit LU Scheme,” AIAA paper 88-0619.
53.Ross C. E. and Steinman D. A., 1994, “Exact Fully 3D Navier-Stokes Solutions for Benchmarking,” Internal Journal for Numerical Methods in Fluids, Vol. 19, pp. 369-375.
54.Shyy, W., Berg, M. and Ljungqvist, D., 1999, ” Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Science, Vol. 35, pp. 455-505.
55.Smith, M. J. C., 1996, ” Simulating Moth Wing Aerodynamics: Towards the Development of Flapping-Wing Technology,” AIAA Journal, Vol. 34, No. 7, pp. 1348-1355.
56.Srinivasan, G. R. and McCroskey, W. J., 1988, “Navier-Stokes Calculations of Hovering Rotor Flowfields,” Journal of Aircraft, 25, No. 10, pp. 865-874.
57.Srinivasan, G. R., Badeder, J. D., Obayashi, S. and W. J. McCroskey, 1992, “Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulations,” AIAA Journal, Vol. 30, No. 10, pp. 2371-2378.
58.Steinthorsen, E. and Shih, T. I-P, 1993, “Method for Reducing Approximation-Factorization Errors in Two- and Three-Factored Schemes,” SIAM J. Sci. Comput., Vol. 14, pp. 1212-1236.
59.Sterger, J. L. and Kulter P., 1977, “Implicit Finite-Difference Procedures for Computation of Vortex Wakes,” AIAA Journal, Vol. 15, pp. 581-590.
60.Temma, R., 1977, “Navier-Stokes Equations,” Amsterdam: North Holland Publishing Co..
61.Thomas P. D. and Lombard C.K., 1979, “Geometric Conservation Law and its Application to flow Computation on Moving Grids,’ AIAA Journal, vol. 17, pp.1030.
62.Tuncer, I. H., 1997, “A 2-D Unsteady Navier-Stokes Solution Method with Moving Overset Grids,” AIAA Journal, Vol. 35, No. 3, pp.471-476, March.
63.Tuncer, I. H., and Platzer, M. F., 1996, “Thrust Generation due to airfoil Flapping,” AIAA Journal, Vol. 34, No. 2, pp.324-331, February.
64.Tuncer, I. H., and Platzer, M. F., 2000, “Computational Study of Flapping Airfoil Aerodynamcs,” Journal of Aircraft, Vol. 35, No. 4, pp.554-560, May-June.
65.Van Leer, B., 1979, “Toward the Ultimate Conservative Difference Scheme V, A second-Order Sequel to Godunov’s scheme,” J. Comp. Phys., Vol. 32, pp. 101-136.
66.Vext N. S., 1996, “Unsteady Aerodynamic Model of Flapping Wings,” AIAA Journal, Vol. 34, pp. 1435.
67.Visbal M. R. and Shang J. S., 1987, “On the Formulation and Control of Dynamic Stall Vortex on a Pitching Airfoil,” AIAA Journal, Vol. 20, pp.1313.
68.William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir, 1998, “The Complete Reference: Volume 2”, The MPI-2 Extensions.
69.Yee, H. C., Beam, R. M., and Warming, R. F., 1982, “Boundary approximation for Implicit Schemes for On-dimensional Inviscid Equations of Gas Dynamic,” AIAA journal, Vol. 20, pp. 1203-1211.
70.Yoon S. and Chang L., 1989, “LU-SGS Implicit Algorithm for Three-Dimensional Incompressible Navier-Stokes Equation with Source Term,” AIAA Paper CP-89-1964.
71.Yoon, S. and Jameson, A., 1987, “Lower-Upper symmetric Gauss Seidel Method for the Euler and Navier-Stokes Equation,” AIAA Journal, Vol. 26, pp. 1025-1026.
72.Yu, Z. X., 2002, “Finite Volume Scheme for Incompressible Flows and its Applications to Internal and External Flows,” Dissertation for Doctor of Philosophy Department of Aeronautics and Astronautics, National Cheng Kung University, R.O.C.
73.Zhong, B., Qin, N., 2001, “Non-Inertial Multiblock Navier-Stokes Calculation for Hovering Rotor Flowfields using Relative Velocity Approach,” The Aeronautical J., July, pp. 379-389.