| 研究生: |
蔡秉宏 Tsai, Bin-Hong |
|---|---|
| 論文名稱: |
磺酸化苯乙烯/異戊二烯嵌段氫化共聚物之生物相容性之研究 Study of sulfonation of hydrogenated styrene/isoprene block copolymer and evaluation of its biocompatibility |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 磺酸化 、彈性苯乙烯共聚物 、氫化反應 、聚丙烯 、血小板相容性 、細胞毒性 |
| 外文關鍵詞: | Sulfonation, elastic materials, hydrogenated SEPS, wound drsssing, blood compatibility, cytotoxicity |
| 相關次數: | 點閱:159 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PVC在醫療臨床應用上,已經行之有年,價格跟物性至今尚未找到完全取代的高分子材料,因此世界各國尚未禁用PVC相關的醫療器材。目前取代PVC的可能性方案,就是簡稱TPE(Thermoplastic Elastomer)的熱塑性彈性體,目前TPE主要是針對非血液接觸上使用,尚無一款材料可以取代PVC在血液接觸醫用包材上的市場,如何在維持TPE與PVC相近的物理特性的情況下,改善其血液或是生物相容性,是未來科學家研究的重要課題。
本研究利用高分子單體設計,成功合成磺酸化氫化苯乙烯嵌段共聚物,共聚物與聚丙烯混合後,材料的血液相容性與細胞毒性,顯示其具有用於血液接觸包材用途上潛力。
In this study, triblock copolymer, tSIS, has been successfully polymerized by anionic polymerization. The hard segment of tSIS will be made up with specific ratios of styrene and tert-butyl styrene for the purpose of controlling the degree of sulfonation. Functionalization with sulfonic groups in block copolymer allows this polymer to achieve an excellent balance among various applications, mainly thanks to its block molecular structure and functionalization with sulfonic hydrophilicity and mechanical stability. After the hydrogenation of tSIS, selective sulfonation process was conducted, introducing the hydrophilic sulfonic functional groups into the tSEPS triblock copolymer.
Besides, thinner SBC films for a variety of useful applications such as membrane materials, antimicrobial films was also difficult because the films obtained after heat treatment do not maintain their forms and immediately shrink and deform. Therefore, SBC thin films were prepared as a composite by using PP and wax to improve its flexibility.
In this research, sulfonated tSEPS and sulfonated tSEPS/PP films demonstrated promising balance of hydrophilicity and structural integrity. Sulfonated tSEPS films remained physical intact in aqueous solution. Finally, platelet adhesion assay and cytotoxicity tests suggested that sulfonated tSEPS exhibits great potential in being future candidates for wound dressing or in tissue engineering applications.
1. Jaeger, R.J. and R.J. Rubin, Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science, 1970. 170: p. 460-462.
2. Prowse, C.V., et al., Commercially available blood storage containers. Vox Sang, 2014. 106(1): p. 1-13.
3. Giangrande, P.L.F., The history of blood transfusion. British Journal of Haematology, 2000. 110: p. 758-767.
4. Carmen, R., The Selection of Plastic Materials for Blood Bags. Transfusion Medicine Reviews, 1993. 7(1): p. 1-10.
5. RJ, J. and R. RJ, Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science, 1970. 170: p. 460-462.
6. Scientific Committee on Emerging and Newly-Identified Health Risks. Opinion on The Safety of Medical Devices Containing DEHP plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk. 2008.
7. Jiang, G., et al., Characterization of polypropylene/hydrogenated styrene-isoprene-styrene block copolymer blends and fabrication of micro-pyramids via micro hot embossing of blend thin-films. RSC Advances, 2015. 5(112): p. 92212-92221.
8. Donna M. Hylton, S.W.S., Robert A. Latour, Jr., Direct correlation between adsorption-induced changes inprotein structure and platelet adhesion. Journal of Biomedical Materials Research, 2005. 73A(3): p. 10.
9. Masashi Kaneko, H.S., Sulfonation of Poly(propylene) Films with Fuming Sulfuric Acid. Macromolecular Chemistry and Physics, 2004. 206(4): p. 8.
10. Matsuo, M., et al., Fine structures and physical properties of styrene-butadiene block copolymers. Polymer, 1968. 9: p. 425-436.
11. Chang, C.-H., et al., Synthesis of the Heparin-Based Anticoagulant Drug Fondaparinux. Angew. Chem. Int. Ed., 2014. 53: p. 9876 –9879.
12. Paule Carreno, M.J., Michel Kazatchkinet, Denis Labarre, Regulation by sulphonate groups of complement activation induced by hydroxymethyl groups on polystyrene surfaces. Biomaterials, 1993. 14(3): p. 6.
13. Shifang Luan, J.Z., Huawei Yang, Hengchong Shi, Jing Jin, Xiaomeng Li, Jingchuan Liu, Jianwei Wang, Jinghua Yin, Paola Stagnaro, Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B: Biointerfaces, 2012. 93: p. 127-134.
14. Luan, S., et al., Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B-Biointerfaces, 2012. 93: p. 127-134.
15. Xiaomeng Li, S.L., Hengchong Shi, Huawei Yang, Lingjie Song, Jing Jin, Jinghua Yin, Paola Stagnaro, Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 2013. 102: p. 210-217.
16. Pinchuk, L., et al., Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials, 2008. 29(4): p. 448-60.
17. Tian Zhou, Y.Z., Xia Li, Xiangmei Liu, Kelvin W.K. Yeung, Shuilin Wu, Xianbao Wang, Zhenduo Cui, Xianjin Yang, Paul K. Chu, Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016. 83: p. 191-235.
18. Orujalipoor, I., et al., Partially sulfonated styrene-(ethylene-butylene)-styrene copolymers: Nanostructures, bio and electro-active properties. Materials Chemistry and Physics, 2019. 225: p. 399-405.
19. Laprade, E.J., Liaw, C.‐Y., Jiang, Z. and Shull, K.R., Mechanical and microstructural characterization of sulfonated pentablock copolymer membranes. J. Polym. Sci. Part B: Polym. Phys., 2015. 53: p. 39-47.
20. Xu, X., et al., Construction of anti-thrombotic and anti-oxidative surfaces with elastomer/Pluronic F127 assembled microfibers. Applied Surface Science, 2018. 451: p. 76-85.
21. Ribeiro, S., et al., Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014. 67: p. 30-38.
22. Heath, D.E., Promoting Endothelialization of Polymeric Cardiovascular Biomaterials. Macromolecular Chemistry and Physics, 2017. 218(8).
23. Han, D.K., et al., Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J. Biomed. Mater. Res.: Applied Biomaterials, 1989. 23: p. 87-104.
24. Zhang, L., Facile surface modification of glass with zwitterionic polymers for improving the blood compatibility. Mater. Res. Express, 2018. 5.
25. RTI Laboratories, FTIR Analysis, https://rtilab.com/techniques/ftir-analysis/.
26. Lam, L.M.T., et al., Reagent-Free Identification of Clinical Yeasts by Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Journal of Clinical Microbiology, 2019. 57(5): p. e01739-18.
27. SpectraTech, Introduction to Attenuated Total Internal Reflectance (ATR).
28. Anton Paar. Attenuated total reflectance (ATR).
29. Decker, E.L., et al., Physics of contact angle measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 156: p. 177-189.
30. Majhy, B., R. Iqbal, and A.K. Sen, Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic - superhydrophilic surface. Sci Rep, 2018. 8(1): p. 18018.
31. Law, K.Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J Phys Chem Lett, 2014. 5(4): p. 686-8.
32. Drioli, E. and L. Giorno, Encyclopedia of Membranes. Springer-Verlag Berlin Heidelberg, 2016: p. 2055-2070.
33. Elimelech, M., W.H. Chen, and J.J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Demhation, 1994. 95: p. 269-286.
34. Salgın, S., U. Salgın, and N. Tuzlalı, Determination of correct zeta potential of polyether sulfone membranes using CLC and AGC: ionic environment effect. Desalination and Water Treatment, 2016. 57(54): p. 26031-26040.
35. ETH Zürich, Scanning Electron Microscopy, https://www.microscopy.ethz.ch/sem.htm.
36. 王馨翊, 聚氨酯薄膜於週期動態細胞培養之開發. 國立成功大學碩士論文, 2017.
37. Vickerman, J.C. and I.S. Gilmore, Surface Analysis – The Principal Techniques, 2nd Edition. John Wiley & Sons, Ltd., 2009: p. 1-679.
38. Schneider, T., et al., Oriented Monolayers Prepared from Lyotropic Chromonic Liquid Crystal. Langmuir, 2005. 21: p. 2300-2307.
39. 徐逸明, et al., 常壓電漿原理、技術與應用. 馗鼎奈米科技股份有限公司: p. 8-29.
40. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
41. Lee, P.Y., et al., Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp, 2012(62).
42. Yılmaz, M., C. Ozic, and I. Gok, Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. 2012: p. 1-9.
43. Weiss, R.A., et al., Sulfonation of Alkenes by Chlorosulfuric Acid, Acetyl Sulfate, and Trifluoroacetyl Sulfate. Polymer, 1991. 32: p. 1867-1873.
44. Pruthesh H. Vargantwar, M.C.B., Steven D. Smith, Richard J. Spontak Midblock sulfonation of a model long-chain poly(p-tert-butylstyrene-b-styrene-b-p-tert-butylstyrene) triblock copolymer. J. Mater. Chem. B, 2012. 22: p. 25262-25271.
45. Worsfold, D.J. and S. Bywater, Anionic Polymerization of ISoprene. Canadian Journal of Chemistry, 1964. 42: p. 2884-2892.
46. Worsfold, D.J. and S. Bywater, Anionic Polymerization if Styrene. Canadian Journal of Chemistry, 1960. 38: p. 1891-1900.
47. Bywater, S. and D.J. Worsfold, Anionic Polymerization of Styrene effect of Tetrahydrofuran. Canadian Journal of Chemistry, 1962. 40: p. 1564-1570.
48. Mather, B.D., F.L. Beyer, and T.E. Long, Synthesis and SAXS characterization of sulfonated styrene-ethylene/propylene-styrene triblock copolymers. 2006, DTIC Document.
49. Jianhua Lv, J.J., Yuanyuan Han, Wei Jiang, Effect of end-grafted PEG conformation on the hemocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene). Journal of Biomaterials Science, Polymer Edition, 2019. 30(17): p. 1670-1685.
50. Tada, H. and S. Ito, Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid. Langmuir, 1997. 13(15): p. 3982-3989.
51. Li, X., et al., Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B-Biointerfaces, 2013. 102: p. 210-217.
52. Li, R., J. Jin, and Y. Sun, Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D. Applied Surface Science, 2014. 301: p. 300-306.
53. Cooper, T.G.G.S.L., Properties and biological inteactions of polyurethane anionomers: Effect of sulfonate incorporation. Journal of Biomedical Materials Research, 1989. 23(3): p. 331-338.
54. Hsi-Yi Yeh, J.-C.L., Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy. Journal of Biomaterials Science -- Polymer Edition,, 2008. 19(3): p. 291-310.
55. Polat, K. and M. Sen, Preparation and characterization of a thermoplastic proton-exchange system based on SEBS and polypropylene blends. Express Polymer Letters, 2017. 11(3): p. 209-218.
56. Merche, D., et al., One Step Polymerization of Sulfonated Polystyrene Films in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 2010. 7(9-10): p. 836-845.
57. NASEF, M.M., et al., XPS Studies of Radiation Grafted PTFE-g-polystyrene Sulfonic Acid Membranes. Journal of Applied Polymer Science, 2000. 76: p. 336–349.
58. Singare, P.U., R.S. Lokhande, and R.S. Madyal, Thermal degradation studies of polystyrene sulfonic and polyacrylic carboxylic cationites. Russian Journal of General Chemistry, 2010. 80(3): p. 527-532.
59. Matsuda, M., et al., Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin. Journal of Nuclear Science and Technology, 1987. 24(2): p. 124-128.
60. RÂPĂ, M., et al., Development of new recycled polypropylene - styrene-isoprene-styrene block copolymers composites. Journal of Optoelectronics and Advanced Materials, 2013. 15: p. 817 - 822.
61. Râpă, M., et al., Improvement of Some Post-consumer Polypropylene (rPP) By Melt Modification With Styrene-Diene Block Copolymers. Environmental Engineering and Management Journal, 2017. 16: p. 2615-2624.