簡易檢索 / 詳目顯示

研究生: 蔡秉宏
Tsai, Bin-Hong
論文名稱: 磺酸化苯乙烯/異戊二烯嵌段氫化共聚物之生物相容性之研究
Study of sulfonation of hydrogenated styrene/isoprene block copolymer and evaluation of its biocompatibility
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: 磺酸化彈性苯乙烯共聚物氫化反應聚丙烯血小板相容性細胞毒性
外文關鍵詞: Sulfonation, elastic materials, hydrogenated SEPS, wound drsssing, blood compatibility, cytotoxicity
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PVC在醫療臨床應用上,已經行之有年,價格跟物性至今尚未找到完全取代的高分子材料,因此世界各國尚未禁用PVC相關的醫療器材。目前取代PVC的可能性方案,就是簡稱TPE(Thermoplastic Elastomer)的熱塑性彈性體,目前TPE主要是針對非血液接觸上使用,尚無一款材料可以取代PVC在血液接觸醫用包材上的市場,如何在維持TPE與PVC相近的物理特性的情況下,改善其血液或是生物相容性,是未來科學家研究的重要課題。
    本研究利用高分子單體設計,成功合成磺酸化氫化苯乙烯嵌段共聚物,共聚物與聚丙烯混合後,材料的血液相容性與細胞毒性,顯示其具有用於血液接觸包材用途上潛力。

    In this study, triblock copolymer, tSIS, has been successfully polymerized by anionic polymerization. The hard segment of tSIS will be made up with specific ratios of styrene and tert-butyl styrene for the purpose of controlling the degree of sulfonation. Functionalization with sulfonic groups in block copolymer allows this polymer to achieve an excellent balance among various applications, mainly thanks to its block molecular structure and functionalization with sulfonic hydrophilicity and mechanical stability. After the hydrogenation of tSIS, selective sulfonation process was conducted, introducing the hydrophilic sulfonic functional groups into the tSEPS triblock copolymer.
    Besides, thinner SBC films for a variety of useful applications such as membrane materials, antimicrobial films was also difficult because the films obtained after heat treatment do not maintain their forms and immediately shrink and deform. Therefore, SBC thin films were prepared as a composite by using PP and wax to improve its flexibility.
    In this research, sulfonated tSEPS and sulfonated tSEPS/PP films demonstrated promising balance of hydrophilicity and structural integrity. Sulfonated tSEPS films remained physical intact in aqueous solution. Finally, platelet adhesion assay and cytotoxicity tests suggested that sulfonated tSEPS exhibits great potential in being future candidates for wound dressing or in tissue engineering applications.

    摘要 II 誌謝 XVI 第一章 緒論 1 第二章 文獻回顧 6 2-1 嵌段共聚物材料簡介: 6 2-1-1熱塑性聚苯乙烯系彈性體(TPS / TPR)簡介: 6 2-1-2 苯乙烯嵌段共聚物的物理型態 7 2-1-3 苯乙烯嵌段共聚物日常生活的應用 9 2-1-4 苯乙烯嵌段共聚物的合成 11 2-1-5 苯乙烯嵌段共聚物於醫療上的文獻 16 2-2提升材料生物相容性表面改質方法簡介: 20 2-2-1 表面物理塗層(Synthetic coating) 20 2-2-2 化學接枝法 (Chemical grafting) 20 2-2-3 電漿改質法 22 2-2-4 表面仿生材料改質法 22 2-3 生物相容性的定義: 24 2-3-1生醫材料植入體內的反應 24 2-3-2 血液的組成 25 2-3-3 血小板的組成 26 2-3-4 血小板的功能 27 2-3-5 凝血機制 29 2-3-6 組織再生工程使用的生醫材料 32 2-4 本篇研究生物相容性研究載體的選擇與分子修飾策略: 33 2-5 研究目的: 35 第三章 實驗藥品與儀器簡介 36 3-1 實驗藥品: 36 3-2 實驗設備: 38 3-3實驗儀器原理: 39 3-3-1傅立葉轉換紅外光譜儀/衰減全反射法 39 3-3-2 水接觸角量測儀 41 3-3-3 界達電位 42 3-3-4超高解析度冷場發射掃描式電子顯微鏡 45 3-3-5 高解析電子能譜儀 46 3-3-6常壓電漿簡介: 48 3-3-7 瓊脂糖凝膠電泳: 49 3-3-8高解析核磁共振光譜儀 50 第四章 實驗方法 52 4-1研究方法分類 52 4-1-1 磺酸化tSEPS生物相容性評估實驗流程: 52 4-2 Styrene-Isoprene-Styrene 三鏈段共聚物合成方法: 54 4-2-1實驗藥品前處理 54 4-2-2合成A—B—A團鏈共聚物 (tSIS) 55 4-2-3製備SIS薄膜 56 4-2-4測量tSIS薄膜機械性質 56 4-2-5利用GPC量測tSIS之分子量 56 4-3氫化SIS三嵌段共聚物(tSEPS) 57 4-3-1氫化步驟 57 4-3-2氫化產物去除觸媒 58 4-3-3靜態接觸角之測量 58 4-4磺酸化SEPS嵌段共聚物(stSEPS) 59 4-4-1磺酸化步驟[43] 59 4-4-2磺酸化程度評估 60 4-5磺酸化後材料特性分析 60 4-5-1材料吸水性(Water uptake, WU) 60 4-5-2血小板貼附實驗(In vitro platelet adhesion) 60 4-5-3細胞毒性測試(Cytotoxicity) 62 4-6 tSEPS與PP之混參 63 4-7 tSEPS與PP混參膜的磺酸化 64 第五章 結果與討論 65 5-1合成tSIS三嵌段(triblock)共聚物 65 5-1-1合成tSIS三嵌段共聚物NMR光譜鑑定 65 5-1-2 tSIS共聚物分子量 68 5-1-3機械性質評估 69 5-2氫化tSIS三嵌段共聚物 71 5-2-1氫化tSIS三嵌段共聚物1H-NMR結構分析 71 5-2-2 tSEPS靜態接觸角量測 74 5-3磺酸化tSEPS嵌段共聚物 (stSEPS) 76 5-3-1磺酸化tSEPS嵌段共聚物之ATR-FTIR結構分析 76 5-3-2磺酸化程度滴定計算 79 5-4磺酸tSEPS嵌段共聚物之物性研究 82 5-4-1吸水性測試 82 5-4-2血小板吸附實驗 83 5-4-3細胞毒性觀察 88 5-5 磺酸化tSEPS/PP共混物 89 5-5-1 ATR-FTIR定性分析 90 5-5-2 stSEPS/PP ESCA 定性與定量分析 92 5-5-3 表面親疏水性質與型態 99 5-5-4 細胞毒性測試 101 5-5-5 血小板貼附 103 5-6 材料性能比較與鑑定 105 5-6-1 材料熱穩定性 (TGA) 105 5-6-2 熱效應性質 (DSC) 109 5-6-3 機械性質 109 第六章 結論 113 參考文獻 114

    1. Jaeger, R.J. and R.J. Rubin, Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science, 1970. 170: p. 460-462.
    2. Prowse, C.V., et al., Commercially available blood storage containers. Vox Sang, 2014. 106(1): p. 1-13.
    3. Giangrande, P.L.F., The history of blood transfusion. British Journal of Haematology, 2000. 110: p. 758-767.
    4. Carmen, R., The Selection of Plastic Materials for Blood Bags. Transfusion Medicine Reviews, 1993. 7(1): p. 1-10.
    5. RJ, J. and R. RJ, Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science, 1970. 170: p. 460-462.
    6. Scientific Committee on Emerging and Newly-Identified Health Risks. Opinion on The Safety of Medical Devices Containing DEHP plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk. 2008.
    7. Jiang, G., et al., Characterization of polypropylene/hydrogenated styrene-isoprene-styrene block copolymer blends and fabrication of micro-pyramids via micro hot embossing of blend thin-films. RSC Advances, 2015. 5(112): p. 92212-92221.
    8. Donna M. Hylton, S.W.S., Robert A. Latour, Jr., Direct correlation between adsorption-induced changes inprotein structure and platelet adhesion. Journal of Biomedical Materials Research, 2005. 73A(3): p. 10.
    9. Masashi Kaneko, H.S., Sulfonation of Poly(propylene) Films with Fuming Sulfuric Acid. Macromolecular Chemistry and Physics, 2004. 206(4): p. 8.
    10. Matsuo, M., et al., Fine structures and physical properties of styrene-butadiene block copolymers. Polymer, 1968. 9: p. 425-436.
    11. Chang, C.-H., et al., Synthesis of the Heparin-Based Anticoagulant Drug Fondaparinux. Angew. Chem. Int. Ed., 2014. 53: p. 9876 –9879.
    12. Paule Carreno, M.J., Michel Kazatchkinet, Denis Labarre, Regulation by sulphonate groups of complement activation induced by hydroxymethyl groups on polystyrene surfaces. Biomaterials, 1993. 14(3): p. 6.
    13. Shifang Luan, J.Z., Huawei Yang, Hengchong Shi, Jing Jin, Xiaomeng Li, Jingchuan Liu, Jianwei Wang, Jinghua Yin, Paola Stagnaro, Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B: Biointerfaces, 2012. 93: p. 127-134.
    14. Luan, S., et al., Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B-Biointerfaces, 2012. 93: p. 127-134.
    15. Xiaomeng Li, S.L., Hengchong Shi, Huawei Yang, Lingjie Song, Jing Jin, Jinghua Yin, Paola Stagnaro, Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 2013. 102: p. 210-217.
    16. Pinchuk, L., et al., Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials, 2008. 29(4): p. 448-60.
    17. Tian Zhou, Y.Z., Xia Li, Xiangmei Liu, Kelvin W.K. Yeung, Shuilin Wu, Xianbao Wang, Zhenduo Cui, Xianjin Yang, Paul K. Chu, Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016. 83: p. 191-235.
    18. Orujalipoor, I., et al., Partially sulfonated styrene-(ethylene-butylene)-styrene copolymers: Nanostructures, bio and electro-active properties. Materials Chemistry and Physics, 2019. 225: p. 399-405.
    19. Laprade, E.J., Liaw, C.‐Y., Jiang, Z. and Shull, K.R., Mechanical and microstructural characterization of sulfonated pentablock copolymer membranes. J. Polym. Sci. Part B: Polym. Phys., 2015. 53: p. 39-47.
    20. Xu, X., et al., Construction of anti-thrombotic and anti-oxidative surfaces with elastomer/Pluronic F127 assembled microfibers. Applied Surface Science, 2018. 451: p. 76-85.
    21. Ribeiro, S., et al., Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014. 67: p. 30-38.
    22. Heath, D.E., Promoting Endothelialization of Polymeric Cardiovascular Biomaterials. Macromolecular Chemistry and Physics, 2017. 218(8).
    23. Han, D.K., et al., Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J. Biomed. Mater. Res.: Applied Biomaterials, 1989. 23: p. 87-104.
    24. Zhang, L., Facile surface modification of glass with zwitterionic polymers for improving the blood compatibility. Mater. Res. Express, 2018. 5.
    25. RTI Laboratories, FTIR Analysis, https://rtilab.com/techniques/ftir-analysis/.
    26. Lam, L.M.T., et al., Reagent-Free Identification of Clinical Yeasts by Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Journal of Clinical Microbiology, 2019. 57(5): p. e01739-18.
    27. SpectraTech, Introduction to Attenuated Total Internal Reflectance (ATR).
    28. Anton Paar. Attenuated total reflectance (ATR).
    29. Decker, E.L., et al., Physics of contact angle measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 156: p. 177-189.
    30. Majhy, B., R. Iqbal, and A.K. Sen, Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic - superhydrophilic surface. Sci Rep, 2018. 8(1): p. 18018.
    31. Law, K.Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J Phys Chem Lett, 2014. 5(4): p. 686-8.
    32. Drioli, E. and L. Giorno, Encyclopedia of Membranes. Springer-Verlag Berlin Heidelberg, 2016: p. 2055-2070.
    33. Elimelech, M., W.H. Chen, and J.J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Demhation, 1994. 95: p. 269-286.
    34. Salgın, S., U. Salgın, and N. Tuzlalı, Determination of correct zeta potential of polyether sulfone membranes using CLC and AGC: ionic environment effect. Desalination and Water Treatment, 2016. 57(54): p. 26031-26040.
    35. ETH Zürich, Scanning Electron Microscopy, https://www.microscopy.ethz.ch/sem.htm.
    36. 王馨翊, 聚氨酯薄膜於週期動態細胞培養之開發. 國立成功大學碩士論文, 2017.
    37. Vickerman, J.C. and I.S. Gilmore, Surface Analysis – The Principal Techniques, 2nd Edition. John Wiley & Sons, Ltd., 2009: p. 1-679.
    38. Schneider, T., et al., Oriented Monolayers Prepared from Lyotropic Chromonic Liquid Crystal. Langmuir, 2005. 21: p. 2300-2307.
    39. 徐逸明, et al., 常壓電漿原理、技術與應用. 馗鼎奈米科技股份有限公司: p. 8-29.
    40. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
    41. Lee, P.Y., et al., Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp, 2012(62).
    42. Yılmaz, M., C. Ozic, and I. Gok, Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. 2012: p. 1-9.
    43. Weiss, R.A., et al., Sulfonation of Alkenes by Chlorosulfuric Acid, Acetyl Sulfate, and Trifluoroacetyl Sulfate. Polymer, 1991. 32: p. 1867-1873.
    44. Pruthesh H. Vargantwar, M.C.B., Steven D. Smith, Richard J. Spontak Midblock sulfonation of a model long-chain poly(p-tert-butylstyrene-b-styrene-b-p-tert-butylstyrene) triblock copolymer. J. Mater. Chem. B, 2012. 22: p. 25262-25271.
    45. Worsfold, D.J. and S. Bywater, Anionic Polymerization of ISoprene. Canadian Journal of Chemistry, 1964. 42: p. 2884-2892.
    46. Worsfold, D.J. and S. Bywater, Anionic Polymerization if Styrene. Canadian Journal of Chemistry, 1960. 38: p. 1891-1900.
    47. Bywater, S. and D.J. Worsfold, Anionic Polymerization of Styrene effect of Tetrahydrofuran. Canadian Journal of Chemistry, 1962. 40: p. 1564-1570.
    48. Mather, B.D., F.L. Beyer, and T.E. Long, Synthesis and SAXS characterization of sulfonated styrene-ethylene/propylene-styrene triblock copolymers. 2006, DTIC Document.
    49. Jianhua Lv, J.J., Yuanyuan Han, Wei Jiang, Effect of end-grafted PEG conformation on the hemocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene). Journal of Biomaterials Science, Polymer Edition, 2019. 30(17): p. 1670-1685.
    50. Tada, H. and S. Ito, Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid. Langmuir, 1997. 13(15): p. 3982-3989.
    51. Li, X., et al., Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B-Biointerfaces, 2013. 102: p. 210-217.
    52. Li, R., J. Jin, and Y. Sun, Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D. Applied Surface Science, 2014. 301: p. 300-306.
    53. Cooper, T.G.G.S.L., Properties and biological inteactions of polyurethane anionomers: Effect of sulfonate incorporation. Journal of Biomedical Materials Research, 1989. 23(3): p. 331-338.
    54. Hsi-Yi Yeh, J.-C.L., Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy. Journal of Biomaterials Science -- Polymer Edition,, 2008. 19(3): p. 291-310.
    55. Polat, K. and M. Sen, Preparation and characterization of a thermoplastic proton-exchange system based on SEBS and polypropylene blends. Express Polymer Letters, 2017. 11(3): p. 209-218.
    56. Merche, D., et al., One Step Polymerization of Sulfonated Polystyrene Films in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 2010. 7(9-10): p. 836-845.
    57. NASEF, M.M., et al., XPS Studies of Radiation Grafted PTFE-g-polystyrene Sulfonic Acid Membranes. Journal of Applied Polymer Science, 2000. 76: p. 336–349.
    58. Singare, P.U., R.S. Lokhande, and R.S. Madyal, Thermal degradation studies of polystyrene sulfonic and polyacrylic carboxylic cationites. Russian Journal of General Chemistry, 2010. 80(3): p. 527-532.
    59. Matsuda, M., et al., Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin. Journal of Nuclear Science and Technology, 1987. 24(2): p. 124-128.
    60. RÂPĂ, M., et al., Development of new recycled polypropylene - styrene-isoprene-styrene block copolymers composites. Journal of Optoelectronics and Advanced Materials, 2013. 15: p. 817 - 822.
    61. Râpă, M., et al., Improvement of Some Post-consumer Polypropylene (rPP) By Melt Modification With Styrene-Diene Block Copolymers. Environmental Engineering and Management Journal, 2017. 16: p. 2615-2624.

    下載圖示 校內:2023-05-17公開
    校外:2023-05-17公開
    QR CODE