簡易檢索 / 詳目顯示

研究生: 任才俊
Ren, Tsai-Jiun
論文名稱: 以模糊類神經網路為基礎之兩輪行動載具運動控制之研究
Study of the Motion Control of the Two-Wheel Mobile Vehicle System Based on Fuzzy Neural Networks
指導教授: 陳添智
Chen, Tien-Chi
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 92
中文關鍵詞: 兩輪行動載具模糊類神經網路
外文關鍵詞: Fuzzy Neural Networks, Two-Wheel Mobile Vehicle System
相關次數: 點閱:139下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對兩輪行動載具的動態數學模式、運動控制,以及系統的穩定性進行研究。兩輪行動載具主要是依靠兩顆獨立的車輪馬達來驅動,承載人員或是物品。兩輪行動載具的動態方程式在本論文中分別使用動力學分析和Euler-Lagrangian的方法來建立,由動態方程式中可以發現,兩輪行動載具本身是一個相當不穩定的系統,而它的姿態主要是依靠它的兩輪來做控制。基於控制兩輪行動載具的運動與維持其傾斜角的穩定,本論文參照文中所推導的動態方程式,提出一個自調式比例-積分-微分控制策略來實現兩輪行動載具的運動控制。由於所提出的比例-積分-微分控制器參數會隨著響應情況來自行調整內部的參數,使得追蹤誤差能夠最小,因此在系統發生參數變動與外來的干擾時,皆能夠具有強健性來克服。另外,由於此方法的架構簡單,所以容易實現,且無須耗費處理器較多的計算資源。
    兩輪行動載具可使用在平地或是在有坡度的地形上,而在有坡度的地形上時,兩輪行動載具往往需要較大的傾斜角來維持系統的穩定性。所以基於增強此非線性系統傾斜角追蹤的強健性與平順性,以實現兩輪行動載具的運動控制系統,本論文提出了一個新型的強健式參考模型控制策略,其中包含了參考模型模糊類神經網路控制器與強健式模糊類神經網路補償器。參考模型模糊類神經網路控制器是設計依照參考模型與系統之線性化模型輸出的誤差來即時調整其內部的權重值,使得線性化模型輸出會追蹤參考模型;而強健式模糊類神經網路補償器則是用來克服系統參數變動與外部干擾的影響,適時產生補償的能量來維持系統的響應與穩定,並藉由更新法則調整其內部參數,達到系統的輸出近似系統之線性化模型的結果。結合以上的控制器與補償器,所提出的強健式參考模型控制策略將可確保系統的響應與參考模型的輸出一致,並增強兩輪行動載具運動在不同地形上的強健性。除此之外,在兩輪行動載具系統發生參數變動、外來的干擾,或是變更參考模型時,參考模型模糊類神經網路控制器與強健式模糊類神經網路補償器皆將藉由即時的調變其權重和歸屬函數來維持系統的穩定性及所需的控制性能。
    將自調式比例-積分-微分控制器結合差速控制器或是強健式參考模型控制器結合模糊差速控制器,即可達成兩輪行動載具轉彎角速度的運動控制。由模擬與實作的結果可以顯示兩輪行動載具動態方程式的正確性,以及本論文所提出之兩輪行動載具控制策略的效能及強健性。

    This dissertation presents the dynamic model, the motion control and stability analysis of a two-wheel mobile vehicle (TWMV). The TWMV is driven using two independent wheel motors, upon which a vehicle body is mounted. A mathematical model of the TWMV is derived and established using dynamic analysis and Euler-Lagrangian method. The TWMV is inherently unstable and its position is controlled through the actions of the wheel motors. Vehicle motion depends on both the desired wheels response and the tilt angle. A self-tuning proportional-integral-derivative (STPID) control strategy, based on a deduced model, is proposed for implementing a motion control system that stabilizes the TWMV and follows the desired motion commands. The controller parameters are tuned automatically, on-line, to overcome the disturbances and parameter variations. Since the STPID control scheme is not very complex, the system is easy to implement and is not taken much computing time.
    The TWMV is used as a transport, which works on the level ground or an incline. These motions of TWMV may be operated in more wide tilt angle range; especially it’s on an incline. Therefore, this dissertation proposes a new robust model reference motion control scheme of the TWMV for enhancing the system robustness. The robust model reference fuzzy neural networks control (RMRFNNC), consisted of a model reference fuzzy neural networks controller (MRFNNC) and a robust fuzzy neural networks compensator (RBFNNC), is proposed for implementing a motion control system that makes the TWMV be stable and traces desired tilt angle smoothly. According to the error between the reference model and the linearization model output, it will real-time adjust the weights in the MRFNNC using the update rule such that the overall system follows the trajectory of the reference model. The RBFNNC is designed to resist the system parameter variations and external disturbances of TWMV. It can provide a compensated force to TWMV that adjust its output response matching the linearization model. Combine MRFNNC and RBFNNC, the TWMV will depend on the reference model, procure the reference model control and enhance the system robustness on the level ground or an incline. Whether the TWMV internal parameters exhibits variations, suffers external disturbances or changes the reference model, RBFNNC and MRFNNC will immediately update its weights and membership functions, keeping system be stable and have a high performance. Applying the designed fuzzy differential controller, the TWMV can rotate right and left as desired. Computer simulations and experimental results demonstrate the reliability of the TWMV dynamic model and effectiveness of the proposed control schemes.

    Chinese Abstract I Abstract III Acknowledgement V Contents VII List of Tables and Figures IX Symbols XI Chapter 1 Introduction 1 1.1 Literature Survey 1 1.2 Motivation 5 Chapter 2 Modeling of the Two-Wheel Mobile Vehicle 11 2.1 Motivation 11 2.2 Modeling of the TWMV 13 2.2.1 Mobile Vehicle on the Level Ground 13 2.2.2 Mobile Vehicle on an Incline 19 Chapter 3 Motion Control for the Two-Wheel Mobile Vehicle Using Self-Tuning PID Controller 23 3.1 Motivation 23 3.2 The Neural-Network-Like STPID Control Scheme 24 3.2.1 Neural-Network-Like STPID Controller 26 3.2.2 Neural-Network-Like STPID Differential Controller 28 3.2.3 Stability Analysis for Proposed STPID Control Scheme 30 3.3 Experimental Results 34 Chapter 4 Motion Control of Two-Wheel Mobile Vehicle Using Robust Model Reference Fuzzy Neural Networks System 44 4.1 Motivation 44 4.2 Robust Model Reference Fuzzy Neural Networks System Design 46 4.2.1 Model Reference Fuzzy Neural Networks Controller Design 48 4.2.2 Robust Fuzzy Neural Networks Compensator Design 50 4.2.3 Learning Algorithm of MRFNNC and RBFNNC 51 4.3 Fuzzy Differential Controller Design 54 4.4 Stability Analysis of the Robust Model Reference Fuzzy Neural Networks System 57 4.5 Simulation Results 62 4.6 Experimental Results 64 Chapter 5 Conclusions 74 References 78 Publish List 89 About the Author 92

    [1] S. Kajita and K. Tani, “Experimental study of biped dynamic walking,” IEEE Control Systems Magazine, vol. 16, no. 1, pp. 13-19, Feb. 1996.
    [2] A. G. O. Mutambara and H. F. Durrant-Whyte, “Estimation and control for a modular wheeled mobile robot,” IEEE Trans. on Control Systems Technology, vol. 8, no. 1, pp. 35-46, Jan. 2000.
    [3] J. Muller, M. Schneider and M. Hiller, “Modeling, simulation, and model-based control of the walking machine ALDURO,” IEEE/ASME Trans. on Mechatronics, vol. 5, no. 2, pp. 142-152, June 2000.
    [4] F. Inoue, T. Murakami and K. Ohnishi, “A motion control of mobile manipulator with external force,” IEEE/ASME Trans. on Mechatronics, vol. 6, no. 2, pp. 137-142, June 2001.
    [5] M. Egerstedt, X. Hu and A. Stotsky, “Control of mobile platforms using a virtual vehicle approach,” IEEE Trans. on Automatic Control, vol. 46, no. 11, pp. 1777-1782, Nov. 2001.
    [6] Y. Nakamura and A. Sekiguchi, “The chaotic mobile robot,” IEEE Trans. on Robotics and Automation, vol. 17, no. 6, pp. 898-904, Dec. 2001.
    [7] F. Grasser, A. D’Arrigo, S. Colombi and A. C. Ruffer, “JOE: a mobile, inverted pendulum,” IEEE Trans. on Industrial Electronics, vol. 49, pp. 107-114, Feb. 2002.
    [8] G. Antonelli and S. Chiaverini, “Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 1, pp. 109-120, Feb. 2003.
    [9] K. Pathak, J. Franch and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearizaion,” IEEE Trans. on Robotics, vol. 21, no. 3, pp. 505-513, June. 2005.
    [10] M. Sasaki, N. Yanagihara, O. Matsumoto and K. Komoriya, “Steering control of the personal riding-type wheeled mobile platform (PMP),” in Proc. IEEE IROS, pp. 1697-1702, Aug. 2005.
    [11] M. Caccia, “Vision-based ROV horizontal motion control: near-seafloor experimental results,” Control Engineering Practice, vol. 15, no. 6, pp. 703-714, June 2007.
    [12] Y. S. Ha and S. Yuta, “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and Autonomous Systems, vol. 17, pp. 65-80, 1996.
    [13] Segway human transporter (2004). [Online] Availiable: http://www.segway.com
    [14] A. Casavola, E. Mosca and M. Papini, “Control under constraints: an application of the command governor approach to an inverted pendulum,” IEEE Trans. on Control Systems Technology, vol. 12, no. 1, pp. 193-204, Jan. 2004.
    [15] X. Xin and M. Kaneda, “Analysis of the energy-based control for swinging up two pendulums,” IEEE Trans. on Automatic Control, vol. 50, no. 5, pp. 679-684, May 2005.
    [16] N. Muskinja and B. Tovornik, “Swinging up and stabilization of a real inverted pendulum,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 631-639, April 2006.
    [17] M. I. El-Hawwary, A. L. Elshafei, H. M. Emara and H. A. A. Fattah, “Adaptive fuzzy control of the inverted pendulum problem,” IEEE Trans. on Control Systems Technology, vol. 14, no. 6, pp. 1135-1144, Nov. 2006.
    [18] I. Fantoni, R. Lozano and M. W. Spong, “Energy based control of the produbot,” IEEE Trans. on Automatic Control, vol. 45, no. 4, pp. 725-729, April 2000.
    [19] S. M. Kim and W. Y. Han, “Induction motor servo drive using robust PID-like neuro-fuzzy controller,” Control Engineering Practice, vol.14, no. 5, pp. 481-487, May 2006.
    [20] S. Jeon, and M. Tomizuka, “Benefits of acceleration measurement in velocity estimation and motion control,” Control Engineering Practice, vol. 15, no. 3, pp. 325-332, March 2007.
    [21] C. Y. Huang, T. C. Chen and C. L. Huang, ”Robust control of induction motor with a neural-network load torque estimator and a neural-network identification,” IEEE Trans. on Industrial Electronics, vol.46, no. 5, pp. 990-998, Oct. 1999.
    [22] R. J. Wai and K. M. Lin, ”Robust decoupled control of direct field-oriented induction motor drive,” IEEE Trans. on Industrial Electronics, vol. 52, no. 3, pp. 837-854, June 2005.
    [23] J. C. Li, L. Y. Xu and Z. Zhang, ”An adaptive sliding-mode observer for induction motor sensorless speed control,” IEEE Trans. on Industry Applications, vol. 41, no. 4, pp. 1039-1046, July-Aug. 2005.
    [24] M. M. M. Negm, J. M. Bakhashwain and M. H. Shwehdi, ”Speed control of a three-phase induction motor based on robust optimal preview control theory,” IEEE Trans. on Energy Conversion, vol. 21, no. 1, pp. 77-84, March 2006.
    [25] R. J. Wai and K. H. Su, ”Adaptive enhanced fuzzy sliding-mode control for electrical servo drive,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 569-580, April 2006.
    [26] T. J. Ren and T. C. Chen, “Robust speed controlled induction motor drive based on recurrent neural network,” Electric Power System Research, vol. 76, no. 12, pp. 1064-1074, Dec. 2006.
    [27] G. Antonelli and S. Chiaverini, “Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 1, pp. 109-120, Feb. 2003.
    [28] Wen Yu and Xiaoou Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. on Fuzzy Systems, vol. 12, no. 3, pp. 411-420, June 2004.
    [29] J. Zhang, “Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks,” IEEE Trans. on Fuzzy Systems, vol. 13, no. 4, pp. 417-427, Aug. 2005.
    [30] Z. L. Liu and J. Svoboda, “A new control scheme for nonlinear systems with disturbances,” IEEE Trans. on Control Systems Technology, vol. 14, no. 1, pp. 176-181, Jan. 2006.
    [31] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Trans. on Industrial Electronics, vol. 53, no. 3, pp. 929-940, June 2006.
    [32] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. on Industrial Electronics, vol.53, no. 4, pp. 1209-1225, June 2006.
    [33] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee and C. Li, “Fuzzy–neural sliding-mode control for DC–DC converters using asymmetric gaussian membership functions,” IEEE Trans. on Industrial Electronics, vol. 54, no. 3, pp. 1528-1536, June 2007.
    [34] N. Mendalek, K. Al-Haddad, F. Fnaiech and L. A. Dessaint, “Nonlinear control technique to enhance dynamic performance of a shunt active power filter,” IEE Proc. Electric Power Applications, vol. 150, no. 4, pp. 373-379, July 2003.
    [35] T. K. Boukas and T. G. Habetler, “High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback,” IEEE Trans. on Power Electronics, vol. 19, no. 4, pp. 1022-1028, July 2004.
    [36] Y. Niu, J. Lam and X. Wang, “Sliding-mode control for uncertain neutral delay system,” IEE Proc. Control Theory and Applications, vol. 151, no. 1, pp. 38-44, Jan. 2004.
    [37] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proc. Control Theory and Applications, vol. 151, no. 6, pp. 683-690, Nov. 2004.
    [38] A. J. Koshkouei, K. J. Burnham and A. S. I. Zinober, “Dynamic sliding mode control design,” IEE Proc. Control Theory and Applications, vol. 152, no. 4, pp. 392-396, July 2005.
    [39] Y. Yildiz, A. Sabanovic and K. Abidi, “Sliding-mode neuro-controller for uncertain systems,” IEEE Trans. on Industrial Electronics, vol. 54, no. 3, pp. 1676-1685, June 2007.
    [40] J. Zhou, C. Wen and Y. Zhang, “Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity,” IEEE Trans. on Automatic Control, vol. 51, no. 3, pp. 504-511, March 2006.
    [41] B. Chen, X. Liu and S. Tong, “Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 2, pp. 287-300, April 2007.
    [42] Y. F. Peng and C. M. Lin, “RCMAC-based adaptive control for uncertain nonlinear systems,” IEEE Trans. on System, Man, and Cybernetics part: B Cybernetics, vol. 37, no. 3, pp. 651-666, June 2007.
    [43] C. S. Tseng, B. S. Chen and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 3, pp. 381-392, June 2001.
    [44] J. Kalkkuhl, K. J. Hunt and H. Fritz, “FEM-based neural-network approach to nonlinear modeling with application to longitudinal vehicle dynamics control,” IEEE Trans. on Neural Networks, vol. 10, no. 4, pp. 885-897, July 1999.
    [45] S. L. Chen and W. C. Hsu, “Fuzzy sliding mode control for ship roll stabilization,” Asian Journal of Control, vol. 5, no. 2, pp. 176-186, 2003.
    [46] J.-J. E. Slotine and W. Li, “Adaptive control,” in Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall, 1991.
    [47] I. Rivals and L. Personnaz, “Nonlinear internal model control using neural networks: application to processes with delay and design issues,” IEEE Trans. on Neural Networks, vol. 11, no. 1, pp. 80-90, Jan. 2000.
    [48] Y. S. Lai and J. C. Lin, “New hybrid fuzzy controller for direct torque control induction motor drives,” IEEE Trans. on Power Electronics, vol. 18, no. 5, pp. 1211-1219, Sept. 2003.
    [49] J. X. Shen, Z. Q. Zhu, D. Howe and J. M. Buckley, “Fuzzy logic speed control and current-harmonic reduction in permanent-magnet brushless AC drives,” IEE Proc. Electric Power Applications, vol. 152, no. 3, pp. 437-446, May 2005.
    [50] C. Xu and Y. C. Shin, “Design of a multilevel fuzzy controller for nonlinear systems and stability analysis,” IEEE Trans. on Fuzzy Systems, vol. 13, no. 6, pp. 761-778, Dec. 2005.
    [51] F. J. Lin, R. J. Wai, C. H. Lin and D. C. Liu, “Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 356-367, April 2000.
    [52] A. Wu and P. K. S. Tam, “A fuzzy neural network based on fuzzy hierarchy error approach,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 6, pp. 808-816, Dec. 2000.
    [53] W. Y. Wang, C. Y. Cheng and Y. G. Leu, “An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems,” IEEE Trans. on Fuzzy Systems, vol. 34, no. 1, pp. 334-345, Feb. 2004.
    [54] Y. C. Wang, C. J. Chien and C. C. Teng, “Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network,” IEEE Trans. on System, Man, and Cybernetics part: B Cybernetics, vol. 34, no. 3, pp. 1348-1359, June 2004.
    [55] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IEE Proc. Electric Power Applications, vol. 151, no. 6, pp. 711-724, Nov. 2004.
    [56] S. J. Ho, L. S. Shu and S. Y. Ho, “Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 3, pp. 421-434, June 2006.
    [57] F. J. Lin, P. K. Huang and W. D. Chou, “Recurrent-fuzzy-neural-network-controlled linear induction motor servo drive using genetic algorithms,” IEEE Trans. on Industrial Electronics, vol. 54, no. 3, pp. 1449-1461, June 2007.
    [58] T. C. Chen and T. T. Sheu, “Model reference robust speed control for induction-motor drive with time delay based on neural,” IEEE Trans. on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 31, no. 6, pp. 746-753, Nov. 2001.
    [59] S. Xepapas, A. Kaletsanos, F. Xepapas and S. Manias, “Sliding-mode observer for speed-sensorless induction motor drives,” IEE Proc. Control Theory and Applications, vol. 50, no. 6, pp. 611-617, Nov. 2003.
    [60] H. Qiao, J. Peng, Z. B. Xu and B. Zhang, “A reference model approach to stability analysis of neural networks,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 33, no. 6, pp. 925-936, Dec. 2003.
    [61] M. Cirrincione and M. Pucci, “An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model,” IEEE Trans. on Industrial Electronics, vol. 52, no. 2, pp. 532-551, April 2005.
    [62] C. S. Tseng, “Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 1, pp. 58-70, Feb. 2006.
    [63] C. Lightbody and G.. W. Irwin, “Nonlinear control structure based on embedded neural system model,” IEEE Trans. on Neural Networks, vol. 8, no. 3, pp. 553-567, May 1997.
    [64] C. S. Tseng and B. S. Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 6, pp. 795-809, Dec. 2001.
    [65] J. Campbell and M. Sumner, “Practical sensorless induction motor drive employing an artificial neural network for online parameter adaptation,” IEE Proc. Electric Power Applications, vol. 149, no. 4, pp. 255-260, July 2002.
    [66] A. K. Imai, R. R. Costa, L. Hsu, G. Tao and P. V. Kokotovic, “Multivariable adaptive control using high-frequency gain matrix factorization,” IEEE Trans. on Automatic Control, vol. 49, no. 7 , pp. 1152-1156, July 2004.
    [67] D. J. McGill and W. W. King, An Introduction to Dynamics. Boston: PWS, 1995.
    [68] T. J. Ren, T. C. Chen, M. C. Tsai and W. S. Tao, “Modeling and motion control of the mobile vehicle with an inverted pendulum,” Intelligent Manipulation and Grasping International Conference, Italy, pp. 455-460, 2004.
    [69] Z. Su and K. Khorasani, “A neural-network-based controller for a single-link flexible manipulator using the inverse dynamics approach,” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1074-1086, Dec. 2001.

    下載圖示 校內:2008-07-17公開
    校外:2009-07-17公開
    QR CODE