簡易檢索 / 詳目顯示

研究生: 陳元章
Chen, Yuan-Chang
論文名稱: 基於正面與負面影響力之多型態開放式社群影響力模型
Multi-State Open Model based on Positive and Negative Social Influences
指導教授: 黃仁暐
Huang, Jen-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 45
中文關鍵詞: 社群網路影響力社群影響力模型
外文關鍵詞: social network, influence, social influence model
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於社交網站的成功,相關的分析研究已被廣泛研究,在這些研究中,社群影響力是重要和熱門的主題。我們利用社群影響力模型來預測和學習影響力傳播過程,雖然先前已有人提出若干個影響力模型,然而,這些傳統的影響力模型都只將節點分為兩種狀態,活躍和不活躍的狀態,這個策略導致了一些問題,以前的模型只考慮正向影響力的存在,另外,如果不活躍的節點被成功的影響成活躍的節點,這些節點不能再返回到不活躍的節點,在我們的模型中,我們不僅改善了上述的限制,還在我們的模型中使用了新的傳遞影響力方式。我們的多型態影響力模型提出了五個代表性的影響力狀態,透過我們的傳遞方式,社群影響力可能會隨時間而減弱。最後,我們使用精準度的測量與相關影響力模型進行比較,我們的影響力模型優於只有兩種狀態的其他影響力模型,此外,我們還預測使用五個狀態的精準度結果,透過實驗結果,可觀察到多型態節點在社群網路裡的重要性。

    Since the tremendous success of social networking websites, the research on related analysis have widely been studied. Among these research, the social influence is a significant and popular topic. We rely on the social influence model to predict and learn the influence diffusion process. There are several influence models proposed before. However, traditional models only categorize nodes into two types of state, active and inactive. This strategy causes some problems. Previous models only take the positive influence into account. In addition, if the inactive nodes are influenced successfully as active nodes, these active nodes could not return to inactive nodes. In this work, we not only improve above limitations but also propose an novel propagation method in our model. Our model proposes five states to represent the multiple states of influence. By our propagation method, the strength of social influence might be reduced when time elapsed. Eventually, we utilize the measurement of precisions to compare with related models. Our model outperforms than other models with two states. In addition. we predict the result of five states using our model. By means of experiment result, we indicate the importance of multiple states.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgment . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . vi 1 Introduction . . . . . . . . . . . . . . . . . . . . 1 2 Related Works . . . . . . . . . . . . . . . . 5 2.1 Explanatory Model . . . . . . . . . . . . . 5 2.2 Predictive Model . . . . . . . . . . . . . . 6 2.2.1 Non-Graph Based Model . . . . . . . . . . 6 2.2.2 Graph Based Model . . . . . . . . . . . 6 3 Methodology . . . . . . . . . . . . . 12 3.1 Multi-State Open Model . . . . . . . . . 12 3.2 Influence Propagation . . . . . . . . . . . 15 3.3 Example of PA and NA Opinion States . . . . 17 3.4 Example of Compositive Opinion States . . . . . . . 20 4 Experiments. . . . . . . . . . . . . . . . . . . . . . 26 4.1 Preliminary . . . . . . . . . . . . . 26 4.2 Methodology . . . . . . . . . . . . . . 27 4.3 Performance Evaluation . . . . . . . . . . . . . . 28 5 Conclusions and Future Works . . . . . . . . . . . . 37 Reference . . . . . . . . . . . . . . . . . . 38

    [1] B. D. Abrahao, S. Soundarajan, J. E. Hopcroft, and R. Kleinberg. On the separability of structural classes of communities. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 624–632, 2012.

    [2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi. Power in unity: forming teams in large-scale community systems. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pages 599–608, 2010.

    [3] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social influence in social advertising: evidence from field experiments. In Proceeding of the 13th ACM Conference on Electronic Commerce, pages 146–161, 2012.

    [4] V. D. Blonde, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):1–12, 2008.

    [5] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler. A 61-million-person experiment in social influence and political mobilization. Nature, 489(11421):295–298, 2012.

    [6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceeding of the 6th International World Wide Web Conference, pages 107–117, 1998.

    [7] C. C. Cao, Y. Tong, L. Chen, and H. V. Jagadish. Wisemarket: a new paradigm for managing wisdom of online social users. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 455–463, 2013.

    [8] R. Chen, B. C. M. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit data publication: a case study on the montreal transportation system. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 213–221, 2012.

    [9] N. A. Christakis and J. H. Fowler. Connected: the surprising power of our social networks and how they shape our lives. Back Bay Books, pages 300–325, 2011.

    [10] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. Feedback effects between similarity and social influence in online communities. In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 160–168, 2008.

    [11] I. N. Davidson, S. Gilpin, O. T. Carmichael, and P. B. Walker. Network discovery via constrained tensor analysis of fmri data. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 194–202, 2013.

    [12] P. Domingos and M. Richardson. Mining the network value of customers. In Proceeding of the 11st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 57–66, 2001.

    [13] J.-L. Duan, S. Prasad, and J.-W. Huang. Discovering unknown but interesting items on personal social network. In Proceeding of the 16 the Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining, pages 145–156, 2012.

    [14] A. Dubey, S. Chakrabarti, and C. Bhattacharyya. Diversity in ranking via resistive graph centers. In Proceeding of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 78–86, 2011.

    [15] K. El-Arini, U. Paquet, R. Herbrich, J. V. Gael, and B. A. Arcas. Transparent user models for personalization. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 678–686, 2012.

    [16] S. Gilpin, T. Eliassi-Rad, and I. N. Davidson. Guided learning for role discovery (glrd): framework, algorithms, and applications. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 113–121, 2013.

    [17] A. Gionis, T. Lappas, and E. Terzi. Estimating entity importance via counting set covers. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 687–695, 2012.

    [18] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 597–605, 2012.

    [19] J. Goldenberg. Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, 1:100–108, 2001.

    [20] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211–223, 2001.

    [21] M. Gomez-Rodriguez, D. Balduzzi, and B. Scholkopf. Uncovering the temporal dynamics of diffusion networks. In Proceeding of the 28th IEEE International Conference on Machine Learning, pages 561–568, 2011.

    [22] M. Gomez-Rodriguez, J. Leskovec, and B. Schokopf. Structure and dynamics of information pathways in online media. In Proceeding of the 6th ACM International Conference on Web Search and Data Mining, pages 23–32, 2013.

    [23] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community actions. In Proceeding of the 16th ACM Conference on Information and Knowledge Management, pages 499–508, 2008.

    [24] M. Granovetter. Threshold models of collective behavior. The American Journal of Sociology, 83(6):1420–1443, 1978.

    [25] M. Grant and S. Boyd. Cvx: Matlab software for disciplined convex programming. http://cvxr.com/cvx.

    [26] N. Guo, Y. Yu, M. Song, J. Song, and Y. Fu. Soft-csgdt: soft cost-sensitive gaussian decision tree for cost-sensitive classification of data streams. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 7–14, 2013.

    [27] H. W. Hethcote. The mathematics of infectious diseases. Society for Industrial and Applied Mathematics Review, 42(4):599–653, 2000.

    [28] C. Jin, Q. Fu, H. Wang, A. Agrawal, W. Hendrix, W. keng Liao, M. M. A. Patwary, A. Banerjee, and A. N. Choudhary. Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective. In Proceeding of ACM the 19th SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 39–46, 2013.

    [29] G. Kasneci, M. Ramanath, M. Sozio, F. Suchanek, and G. Weikum. Star: Steiner-tree approximation in relationship graphs. In Proceedings of the 25th IEEE International Conference on Data Engineering, pages 868–879, 2009.

    [30] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceeding of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 137–146, 2003.

    [31] X. Kong, J. Zhang, and P. S. Yu. Inferring anchor links across multiple heterogeneous social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 179–188, 2013.

    [32] C. Krauss, L. George, and S. Arbanowski. Tv predictor: personalized program recommendations to be displayed on smarttvs. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 63–70, 2013.

    [33] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and Z. Ghahramani. Sigma: simple greedy matching for aligning large knowledge bases. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 572–580, 2013.

    [34] J. Leskovec, M. Mcglohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog graphs. In Proceeding of the 7th SIAM International Conference on Data Mining, pages 551–556, 2007.

    [35] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu. On popularity prediction of videos shared in online social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 169–178, 2013.

    [36] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet transform for time series classification. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 289–297, 2012.

    [37] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using heat diffusion processes for marketing candidates selection. In Proceeding of the 17th ACM Conference on Information and Knowledge Management, pages 233–242, 2008.

    [38] M. E. J. Newman. The structure and function of complex networks. Society for Industrial and Applied Mathematics Review, 45(2):167–256, 2003.

    [39] J. R. Norris. Markov chains. Cambridge University Press, 1998.

    [40] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. In Proceedings of the 7th International World Wide Web Conference, 1999.

    [41] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of time series subsequences under dynamic time warping. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 262–270, 2012.

    [42] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In Proceeding of the 12nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 61–70, 2002.

    [43] E. M. Rogers. Diffusion of innovations. Free Press. 5th edition, pages 123–154, 2003.

    [44] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina. Correcting for missing data in information cascades. In Proceeding of the 4th ACM International Conference on Web Search and Data Mining, pages 55–64, 2011.

    [45] L. G. Schiffman, L. L. Kanuk, and J. Wisenblit. Consumer behavior. Prentice Hall, pages 260–268, 370–374, 2009.

    [46] K. Shi and K. Ali. Getjar mobile application recommendations with very sparse datasets. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 204–212, 2012.

    [47] Y. Tabei, A. Kishimoto, M. Kotera, and Y. Yamanishi. Succinct interval-splitting tree for scalable similarity search of compound-protein pairs with property constraints. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 176–184, 2013.

    [48] J. Tang, H. Gao, H. Liu, and A. D. Sarma. etrust: understanding trust evolution in an online world. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 253–261, 2012.

    [49] L. A. Tang, X. Yu, Q. Gu, J. Han, A. Leung, and T. F. L. Porta. Mining lines in the sand: on trajectory discovery from untrustworthy data in cyber-physical system. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 410–418, 2013.

    [50] Y. Tian and J. Zhu. Learning from crowds in the presence of schools of thought. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 226–234, 2012.

    [51] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli. Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 104–112, 2013.

    [52] F. Wang, H. Wang, and K. Xu. Diffusive logistic model towards predicting information diffusion in online social networks. In Proceeding of the 32nd International Conference on Distributed Computing Systems, pages 133–139, 2012.

    [53] G. Wang, Y. Zhao, X. Shi, and P. S. Yu. Magnet community identification on social networks. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 588–596, 2012.

    [54] X. Wang and G. Sukthankar. Multi-label relational neighbor classification using social context features. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 464–472, 2013.

    [55] Z. Wang, N. Djuric, K. Crammer, and S. Vucetic. Trading representability for scalability: adaptive multi-hyperplane machine for nonlinear classification. In Proceeding of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 24–32, 2011.

    [56] Z. Wang and J. Ye. Querying discriminative and representative samples for batch mode active learning. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 158–166, 2013.

    [57] S. Xiang, L. Yuan, W. Fan, Y. Wang, P. M. Thompson, and J. Ye. Multi-source learning with block-wise missing data for alzheimer’s disease prediction. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 185–193, 2013.

    [58] X. Xing, Y.-L. Liang, S. Huang, H. Cheng, R. Han, Q. Lv, X. Liu, S. Mishra, and Y. Zhu. Scalable misbehavior detection in online video chat services. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 552–560, 2012.

    [59] J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In Proceeding of the 10th International Conference on Data Mining, pages 599–608, 2010.

    [60] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: a location-content-aware recommender system. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 221–229, 2013.

    [61] J. Yuan, Y. Zheng, and X. Xie. Discovering regions of different functions in a city using human mobility and pois. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 186–194, 2012.

    [62] D. Zhang, J. He, and R. D. Lawrence. Mi2ls: multi-instance learning from multiple informationsources. In Proceeding of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 149–157, 2013.

    [63] J. Zhang, X. Fan, J. Wang, and L. Zhou. Keyword-propagation-based information enriching and noise removal for web news videos. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 561–569, 2012.

    [64] G. Zhao, M.-L. Lee, W. Hsu, W. Chen, and H. Hu. Community-based user recommendation in uni-directional social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 189–198, 2013.

    [65] Y. Zhu, E. Zhong, S. J. Pan, X. Wang, M. Zhou, and Q. Yang. Predicting user activity level in social networks. In Proceeding of the 22nd ACM Conference on Information and Knowledge Management, pages 159–168, 2013.

    無法下載圖示 校內:2017-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE