研究生: |
吳典恩 Wu, Tien-en |
---|---|
論文名稱: |
結合本體論以及關聯法則於查詢擴展之研究 Combine Ontology with Association Rules in Query Expansion Research |
指導教授: |
謝中奇
Hsieh, Chung-chi |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 資訊擷取 、本體論 、關聯法則 、查詢擴展 |
外文關鍵詞: | Information retrieval, Ontology, Query expansion, Association rules |
相關次數: | 點閱:150 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路技術的成熟以及普及化發展,使得網頁數量呈現爆炸性的成長,使用者想在這浩瀚無垠的網路世界中快速的找到所想要的資訊,必須透過搜尋引擎的力量才能達成。
搜尋引擎藉由資訊擷取的技術蒐集網路上的網頁並擔任資訊提供者提供資訊給使用者,使用者只需輸入關鍵字即能獲取所需的資訊。
然而,對於相同概念的文件來說,網頁作者以及使用者所使用的字詞不一樣會造成使用者無法獲得搜尋引擎中其他描述相同概念的網頁文件,
這個問題即是字詞使用差異上的不同所造成,而解決這類問題的方法即是查詢擴展,將使用者所輸入的查詢自動擴展成更多的字詞,以期能搜尋到更為完備的資訊。
本研究所提出的方法,是以結合本體論以及關聯法則進行查詢擴展,希望能改善字詞使用差異的問題並擷取到更多描述同一概念的網頁文件數量,滿足使用者的需求。
以建構出來的本體為主,
並使用網路爬行器蒐集所需的網頁文件為資料集合,再進行探勘字詞之間的關聯法則,並結合本體之中字詞之間的語意關係以及字詞之間的關聯法則關係做為推薦字詞的基礎,
提供給使用者一查詢擴展的推薦機制,協助使用者進行查詢。
With the development of Internet, web pages grow rapidly. In
order to search information they need the users often depend on
search engine. A search engine collects web pages in Internet by
information retrieval techniques, and serves as an information
provider to users. However, regarding web pages of the same
concept, the words used by authors and users use may be different.
This is a "word dismatch" problem which prevents users from
retrieving all web pages of the same concept. The solution is
"query expansion"(QE). QE can expand users' queries and let users
gain more complete information.
This research proposes one method for combining ontology with
association rules to perform QE. It can resolve the word dismatch
problem and retrieve more web pages of the same concept and
satisfy users' needs. The method we proposed is based on ontology,
and uses spider to collect web pages as the data set. After the
spider's operation is finished, we will mine the association rules
between words. We provide one QE's recommendation mechanism which
combines words' semantic relationships within ontology with
association rules among words to help user do query.
Agrawal, R., Umielinski, T. and Swami, A. Mining association rules between sets of
items in large database. The 1993 ACM SIGMOD International Conference on
Management of Data, 207-216.
Akrivas, G., Wallace, M., Stamou, G. andKollias, S. Context-sensitive query expansion
based on fuzzy clustering of index terms. Flexible Query Answering Systems,
Proceedings Lecture Notes in Arti¯cal Intelligence, 1-11, 2002.
Berry, M. J. A. and Lino, G. S. Data Mining Techniques: for Marking, Sales, and
Customer Support. John Wiley and Sons, 1997.
Berzal, F., Blanco, I., Sanchez, D. and Vila, M. A. Measuring the accuracy and
importance of association rules: a new framework. Intelligent Data Analysis, 6,
221-235, 2002.
Buckley, C., Salton, G., Allan, J. and Singhal, A. Automatic query expansion using
SMART: TREC 3. Proceeding of Third Text Retrieval Conference, NIST Special
Publication 500-225, 69-80, 1994.
Carpineto, C., De Mori, R., Romano, G. and Bigi, B. An information-theoretic ap-
proach to automatic query expansion. ACM Transactions on Information Sys-
tems, 19(1), 1-27, 1999.
Chandrasekaran, B., Josephson, J. R. and Benjamins, V. R. What are ontologies, and
why do we need them?. IEEE Intelligent Systems and Their Applications, 14(1),
20-26, 1999.
Chau, M., Fang, X. and Liu Sheng, R. O. Analysis of the query logs of a web site search
engine. Journal of the American Society for Information Science and Technology,
56(13), 1363-1376, 2005.
Chiang, H. L., Chua, E. H. and Storey, V. C. A smart web query method for retrieval
of web data. Data and Knowledge Engineering, 38(1), 63-84, 2001.
Chli, M. and Dewilde, P. Internet search: subdivision-based interactive query expansion
and the soft semantic web. Applied Soft Computing, 6(4), 372-383, 2006.
Croft, W. B. and Harper, D. J. Using probabilistic models of document retrieval
without relevance information. Journal of Documentation, 35, 285-295, 1979.
Croft, W. B., Cook, R. and Wilder, D. Providing government information on the
internet: experiences with Thomas. Proceedings of Digital Libraries '95, 19-25,
1995.
Cui, H., Wen, J. R., Nie, J. Y. and Ma, W. Y. Query expansion by mining user logs.
IEEE Transactions on Knowledge and Data Engineering, 15(4), 829-840, 2003.
Dey, L., Singh, S., Rai, R. and Gupta, S. Ontology aided query expansion for retriev-
ing relevant texts. Advances in Web Intelligence, Proceedings Lecture Notes in
Computer Science, 126-132, 2005.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. The KDD process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11),
27-34, 1996.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. From data mining to knowledge
discovery in databases. AI Magazine, 17(3), 37-54, 1996.
Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J. Knowledge discovery in
databases - an overview. AI Magazine, 13(3), 57-70, 1992.
Gauck, S. and Smith, J. B. An expert system for automatic query reformulation.
Journal of the American Society of Information Science, 44(3), 124-136, 1993.
Gordon, C. and Pathak, P. Finding information on the World Wide Web: the retrieval
effectiveness of search engines. Information Processing and Management, 35(2),
141-180, 1999.
Gurber, T. R. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 199-200, 1993.
Hoeber, O., Yang, X. D. and Yao, Y. Y. Conceptual query expansion. Advances in Web
Intelligence, Proceedings Lecture Notes in Computer Science, 190-196, 2005.
Hong, T. P., Kuo, C. S. and Chi, S. C. Mining association rules from quantitative
data. Intelligent Data Analysis, 3(5), 363-376, 1999.
Kantardzic, M. Data Mining :Concepts, Models, Methods, and Algorithms. John Wiley
and Sons, 2003.
Kim, D. W. and Lee K. H. A new fuzzy information retrieval system based on user
preference model. The 10th IEEE International Conference on Fuzzy Systems,
1, 127-130, 2001.
Klir, G. J. and Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice
Hall, 1995.
Kraft, D. H., Martin-Bautista, M. J., Chen, J. and Vila, M. A. Rules and fuzzy rules
in text: concept, extraction and usage. International Journal of Approximate
Reasoning, 34(2), 145-161, 2003.
Li, W. S. and Agrawal, D. Supporting web query expansion effciently using multi-
granularity indexing and query processing. Data and Knowledge Engineering,
35(3), 239-257, 2000.
Martin-Bautista, M. J., Sanchez, D., Chamorro-Martinez, J., Serrano, J. M. and Vi-
la, M. A. Mining web documents to find additional query terms using fuzzy
association rules. Fuzzy Sets and Systems, 148(1), 85-104, 2004.
Noy, N. F. and McGuinness, D. L. Ontology development 101: a guide to creating
your ¯rst ontology. Stanford Medical Informatics Technical Report, 2001.
Peat, H. P. and Willet, P. The limitations of term co-occurrence data for query expan-
sion in document retrieval systems. Journal of the American Society Information
Science, 42(5), 378-383, 1991.
Porter, M. F. An algorithm for suffix stripping. Program, 14(5), 130-137, 1980.
Qiu, Y. and Frei, H. P. Concept based query expansion. Proceedings of ACM SIGIR
International Conference on Research and Development in Information Retrieval,
160-169, 1993.
Ricardo, B. Y. and Berthier, R. N. Modern Information Retrieval. Addison-Wesley,
2002.
Roberson, S. E. and Sparck Jones, K. Relevance weighting of search terms. Journal of
the American Society for Information Science, 27(3), 129-146, 1993.
Salton, G. and Lesk, M. E. Computer evaluation of indexing and text processing.
Journal of the ACM, 15(1), 8-36, 1968.
Sparck-Jones, K. Automatic Keyword Classification for Information Retrieval. But-
terworth, London, 1971.
Spink, A.,Wolfram, D., Jansen, B. J. and Saracevic, T. Query expansion via conceptual
distance in thesaurus indexed collections. Journal of the American Society for
Information Science, 52(3), 226-234, 2001.
Tudhope, D., Binding, C., Blocks, D. and Cunliffe, D. Query expansion via conceptual
distance in thesaurus indexed collections. Journal of Documentation, 62(4), 509-
533, 2006.
Vechtomova, O. and Wang, Y. A study of the effect of term proximity on query
expansion. Journal of Information Science , 32(4), 324-333, 2006.
Velez, B., Weiss, R., Sheldon, M. A. and Gifford, G. K. Fast and effective query
refinement. Proceedings of 20th ACM Conference on Research and Development
in Information Retrieval (SIGIR'97), Philadelphia, Pennsylvania , 1997.
Xu, J. and Croft, W. B. Query expansion using local and global document analysis.
Proceedings of the Nineteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 4-11, 1996.