簡易檢索 / 詳目顯示

研究生: 曾穎偉
Tseng, Ying-Wei
論文名稱: 以鋯鈦酸鋇絕緣層研製有機非揮發性記憶體
Barium Zirconate Titanate Insulators for Organic Nonvolatile Memory Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 91
中文關鍵詞: 有機薄膜電晶體五環素高介電材料浮閘記憶體
外文關鍵詞: organic thin film transistor, pentacene, high dielectric constant material, floating gate memory
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶液式高介電材料鋯鈦酸鋇做為五環素有機薄膜電晶體之絕緣層材料,並展現出優異的電晶體特性:高場效載子遷移率(7.31cm2/V-1S-1)。本實驗更藉由鋁及部分自發氧化的氧化鋁做為浮動閘極及穿隧層,利用臨界電壓的改變來探討不同電壓對於載子注入及排出的影響,結合高介電常數及浮閘結構之優點,降低了記憶體之操作電壓並展現出了良好的非揮發性記憶體之特性:低操作偏壓(±10V)、大的記憶視窗(4.5V)、超過103秒的記憶時間。最後透過閘極電流的分析,來探討載子傳輸機制。

    In this thesis, we prepared a solution-processed high-κ barium zirconate titanate as a gate dielectric for pentacene-based organic thin film transistor applications. The performance of the transistor showed a high field-effect mobility of 7.31 cm2/V·s. Furthermore, we utilized Al and spontaneously oxidized Al2O3 as the floating gate and the tunneling layer, respectively. The charge and discharge effects with different gate voltages were discussed by Vt shift. By combining the advantages of high-κ dielectric and floating gate structure, the device effectively reduced the operation voltage and showed good performance of nonvolatile memory characteristic, with a low operation voltage of ±10 V, a large memory window of 4.5 V, and a long retention time of 103 s. We also analyzed mechanism injection by gate current fitting to understand the carrier injection mechanism through the oxide.

    摘要 I Abstract II 誌謝 IV Contents VI Figure Captions IX Table Captions XI Chapter 1 Introduction 1 1-1 Background 1 1-2 Advantages of OTFTs 3 1-3 Organic NVM 7 1-3-1 Ferroelectric memory 7 1-3-2 Phase change memory 9 1-3-3 Charge storage memory 11 1-4 Floating gate memory 11 1-5 Motivation 13 1-6 Thesis organization 14 Chapter 2 Organic Semiconductor 16 2-1 Organic semiconductor materials 16 2-2 Charge carrier transport 19 Chapter 3 Principle of Organic Floating Gate Memory 23 3-1 Organic FG-TFTs structures 23 3-2 Operation mode 24 3-3 Important parameters of OTFTs 27 3-3-1 Field-effect mobility 28 3-3-2 Threshold voltage 29 3-3-3 Subthreshold swing 30 3-3-4 On/off current ratio 30 3-4 Parameters of NVM device 32 3-4-1 Memory window 32 3-4-2 Retention 32 3-4-3 Endurance 32 3-5 The mechanism of carrier injection 33 3-5-1 Hot carrier injection 33 3-5-2 F–N tunneling 34 3-5-3 Direct tunneling 34 Chapter 4 Experiment Materials and Equipment 37 4-1 Experiment materials 37 4-1-1 Experiment materials 37 4-1-2 Solution preparation 41 4-2 Experiment equipment 42 4-2-1 Physical vapor deposition (PVD) 42 4-2-2 Thermal evaporator 42 4-2-3 Spin coater 43 4-2-4 Ultraviolet (UV)-ozone cleaner 44 4-3 Measurement systems 47 4-3-1 Current–voltage (I–V) measurement 47 4-3-2 Capacitance–voltage measurement 47 4-3-3 Atomic force microscope (AFM) 47 4-3-4 X-ray diffraction (XRD) 48 4-3-5 X-ray photoelectron spectroscopy (XPS) 48 4-4 Sample fabrication 50 4-4-1 Substrate cleaning 50 4-4-2 Gate electrode 51 4-4-3 Insulator layer 51 4-4-4 Active layer 52 4-4-5 Source and drain electrodes 52 Chapter 5 Results and Discussion 56 5-1 Analysis of BZT insulator films 56 5-1-1 XPS of BZT film 56 5-1-2 XRD 56 5-1-3 Atomic force microscopy (AFM) 57 5-2 Characteristics of thin film transistor 60 5-2-1 MIM measurement 60 5-2-2 I–V measurement 63 5-3 Physical property of the floating gate thin film 66 5-3-1 XPS of floating gate thin film 66 5-3-2 Transmission electron microscopy (TEM) 66 5-3-3 Surface morphology 67 5-4 Characteristics of floating gate thin film transistor 72 5-4-1 I–V measurement 72 5-4-2 Memory measurement 72 5-4-3 Mechanism 73 5-4-4 Reliability test 75 5-5 Comparison with other works 83 Chapter 6 Conclusion and Future Prospects 84 6-1 Conclusions 84 6-2 Future prospects 85 References 87

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical Review, vol. 74, p. 230, 1948.
    [2] C. Y. Wei, S. H. Kuo, W. C. Huang, Y. M. Hung, C. K. Yang, F. Adriyanto, and Y. H. Wang, “High-performance pentacene-based thin-film transistors and inverters with solution-processed barium titanate insulators,” IEEE Transactions on Electron Devices, vol. 59, pp. 477-484, 2012.
    [3] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, pp. 913-915, 1987.
    [4] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, 1999, pp. 337, 340.
    [5] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, pp. 1210-1212, 1986.
    [6] H. Klauk, U. Zschieschang, and M. Halik, “Low-voltage organic thin-film transistors with large transconductance,” Journal of Applied Physics, vol. 102, p. 074514, 2007.
    [7] Raghu Das and Dr Peter Harrop. (2015). Printed, Flexible and Organic Electronics Report [Online]. Available: http://www.idtechex.com/research/reports/printed-organic-and-flexible-electronics-forecasts-players-and-opportunities-2015-2025-000425.asp.
    [8] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chemical reviews, vol. 107, pp. 926-952, 2007.
    [9] S. K. Park, J. E. Anthony, and T. N. Jackson, “Solution-processed TIPS-pentacene organic thin-film-transistor circuits,” IEEE Electron Device Letters, vol. 28, pp. 877-879, 2007.
    [10] C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, H. Tong-Jyun, D.-W. Chou, and Y.-H. Wang, “Pentacene-Based Thin-Film Transistors with a Solution-Process Hafnium Oxide Insulator,” IEEE Electron Device Letters, vol. 30, no. 10, pp. 1039-1041, 2009.
    [11] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. G. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors,” Sensors and Actuators B: Chemical, vol. 67, pp. 312-316, 2000.
    [12] S.-J. Kim and J.-S. Lee, “Flexible organic transistor memory devices,” Nano letters, vol. 10, pp. 2884-2890, 2010.
    [13] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takeuchi, T. Sakurai, T. Someya, “Organic nonvolatile memory transistors for flexible sensor arrays,” Science, vol. 326, pp. 1516-1519, 2009.
    [14] M. Banach. (2015, Nov. 03). Organic transistors (OTFT) - the key to flexible electronics [Online]. Available: http://www.flexenable.com/blog/organic-transistors-otft-the-key-to-flexible-electronics/
    [15] Mile long printed logic circuits for RFID tags. http://www.polyic.com/en/press-images.php, 2006.
    [16] http://www.lapis-semi.com/en/semicon/feram/.
    [17] Y. Sasago, M. Kinoshita, H. Minemura, Y. Anzai, M. Tai, K. Kurotsuchi, S. Morita, T. Takahashi, T. Takahama, T. Morimoto, T. Mine, A. Shima, and T. Kobayashi, “Phase-change memory driven by poly-Si MOS transistor with low cost and high-programming gigabyte-per-second throughput,” VLSI Technology (VLSIT), pp. 96-97, 2011.
    [18] D. Frohman-Bentchkowsky, “The metal-nitride-oxide-silicon (MNOS) transistor—characteristics and applications,” Proceedings of the IEEE, vol. 58, pp. 1207-1219, 1970.
    [19] B. E. E. Kastenmeier, P. J. Matsuo, J. J. Beulens, and G. S. Oehrlein, “Chemical dry etching of silicon nitride and silicon dioxide using CF4/O2/N2 gas mixtures,” Journal of Vacuum Science & Technology A, vol. 14, pp. 2802-2813, 1996.
    [20] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell System Technical Journal, vol. 46, pp. 1288-1295, 1967.
    [21] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Applied thermal engineering, vol. 23, pp. 251-283, 2003.
    [22] C.-Y. Wei, H. Wen-Chieh, Y. Chih-Kai, C. Yen-Yu, and Y.-H. Wang, “Low-Operating-Voltage Pentacene-Based Transistors and Inverters With Solution-Processed Barium Zirconate Titanate Insulators,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1755-1757, 2011.
    [23] J. Peng, C. Sheng, J. Shi, X. Li, and J. Zhang, “High-k titanium–aluminum oxide dielectric films prepared by inorganic–organic hybrid solution,” Journal of Sol-Gel Science and Technology, vol. 71, pp. 458-463, 2014.
    [24] M. Ritala and M. Leskela, “Atomic layer deposition,” Handbook of thin film materials, vol. 1, pp. 103-159, 2001.
    [25] I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization: Springer Science & Business Media, 2009.
    [26] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors,” Nature, vol. 457, pp. 679-686, 2009.
    [27] S. Goffri, C. Müller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J. W. Andreasen, R. Thompson, R. A. J. Janssen, M. M. Nielsen, P. Smith, H. Sirringhaus, “Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold,” Nature materials, vol. 5, pp. 950-956, 2006.
    [28] C.-Y. Wei, S.-H. Kuo, Y.-M. Hung, W.-C. Huang, F. Adriyanto, and Y.-H. Wang, “High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator,” IEEE Electron Device Letters, vol. 32, pp. 90-92, 2011.
    [29] M. Kitamura, Y. Kuzumoto, S. Aomori, and Y. Arakawa, “High-frequency organic complementary ring oscillator operating up to 200 kHz,” Applied physics express, vol. 4, p. 051601, 2011.
    [30] D. R. Klein, Organic Chemistry, 1st ed. Hoboken, NJ: Wiley, 2012.
    [31] I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization: Springer Science & Business Media, 2008.
    [32] Z. Bao, and J. Locklin, Organic field-effect transistors: CRC Press, pp. 162-164, 2007.
    [33] K. Leo. What are organic semiconductors [Online]. Available: http://www.iapp.de/orgworld/?Basics:What_are_organic_semiconductors.
    [34] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon, New York, 1982.
    [35] M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, and N. S. Sariciftci, “Current versus gate voltage hysteresis in organic field effect transistors,” Monatshefte für Chemie-Chemical Monthly, vol. 140, pp. 735-750, 2009.
    [36] P. Cosseddu and A. Bonfiglio, “A comparison between bottom contact and top contact all organic field effect transistors assembled by soft lithography,” Thin Solid Films, vol. 515, pp. 7551-7555, 2007.
    [37] B. Kumar, P. Mittal, Y. S. Negi, and B. K. Kaushik, "Top and bottom gate polymeric thin film transistor analysis through two dimensional numerical device simulation," in Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, pp. 855-864 2012.
    [38] M.-B. Lin, Introduction to VLSI systems: a logic, circuit, and system perspective: CRC Press, 2011.
    [39] J. C. Ranuárez, M. J. Deen, and C.-H. Chen, “A review of gate tunneling current in MOS devices,” Microelectronics reliability, vol. 46, pp. 1939-1956, 2006.
    [40] M. Lenzlinger and E. H. Snow, “Fowler‐Nordheim Tunneling into Thermally Grown SiO2,” Journal of Applied physics, vol. 40, pp. 278-283, 1969.
    [41] W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin- film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, pp. 414–418, 2007.
    [42] L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, “Nonvolatile electrical bistability of organic/metal-nanocluster/organic system,” Applied Physics Letters, vol. 82, pp. 1419-1421, 2003.
    [43] B. R. Strohmeier, “Characterization of an activated alumina Claus catalyst by XPS,” Surface Science Spectra, vol. 3, no. 2, pp. 141-146, 1994.
    [44] J. A. Rotole, and P. M. A. Sherwood, “Gamma-alumina (γ-Al2O3) by XPS,” Surface Science Spectra, vol. 5, no. 1, pp. 18-24, 1998.
    [45] J. Veres, S. Ogier, and G. Lloyd, “Gate insulators in organic field-effect transistors,” Chemistry of Materials, vol. 16, pp. 4543-4555, 2004.
    [46] K. Hummer, and C. A-Draxl, “Electronic properties of oligoacenes from first principles,” Physical Review B, vol. 72, p.205205, 2005.
    [47] J. Robertson, and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors,” Journal of Applied Physics, vol. 100, no. 1, p. 014111, 2006.
    [48] F. Jiménez-Molinos, A. Palma, F. Gamiz, J. Banqueri, and J. A. Lopez-Villanueva, “Physical model for trap-assisted inelastic tunneling in metal-oxide-semiconductor structures,” Journal of Applied Physics, vol. 90, pp. 3396-3404, 2001.
    [49] C. Zhao, C. Z. Zhao, S. Taylor, and P. R. Chalker, “Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm,” Materials, vol. 7, no. 7, pp.5117-5145, 2014.
    [50] B. Wang, H. Nguyen, Y. Ma, and R. Paulsen, “Highly reliable 90-nm logic multitime programmable NVM cells using novel work-function-engineered tunneling devices,” IEEE Transactions on Electron Devices, vol. 54, no. 9, 2007.
    [51] J. Ying, J. Han, L. Xiang, W. Wang, and W. Xie, “Multilevel memory characteristics by light-assisted programming in floating-gate organic thin-film transistor nonvolatile memory,” Current Applied Physics, vol. 15, pp. 770-775, 2015.
    [52] J. Han, W. Wang, J. Ying, and W. Xie, “Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory,” Applied Physics Letters, p. 013302, 2014.
    [53] S.-J. Kim, Y.-S. Park, S.-H. Lyu, and J.-S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers,” Applied Physics Letters, vol. 96, p. 033302, 2010.
    [54] W. Wang and D. Ma, “Organic floating-gate transistor memory based on the structure of pentacene/nanoparticle-Al/Al2O3,” Applied Physics Letters, vol. 96, p. 203304, 2010.
    [55] W. Wang, J. Shi, and D. Ma, “Organic thin-film transistor memory with nanoparticle floating gate,” IEEE Transactions on Electron Devices, vol. 56, pp. 1036-1039, 2009.
    [56] K. Fukuda, T. Hamamoto, T. Yokota, T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, “Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors,” Applied Physics Letters, vol. 95, p. 203301, 2009.
    [57] A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical reviews, vol. 96, pp. 1533-1554, 1996.
    [58] S.-J. Kim and J.-S. Lee, “Flexible organic transistor memory devices,” Nano letters, vol. 10, pp. 2884-2890, 2010.

    無法下載圖示 校內:2021-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE