| 研究生: |
陳昱丞 Chen, Yu-Cheng |
|---|---|
| 論文名稱: |
以滲透壓衝擊回收基因重組大腸桿菌之間質蛋白質 Recovery of periplasmic proteins from recombinant Escherichia coli by osmotic shock |
| 指導教授: |
陳特良
Chen, Teh-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 間質蛋白 、基因重組大腸桿菌 、滲透壓衝擊 、回收方法 |
| 外文關鍵詞: | periplasmic protein, osmotic shock, recombinant Escherichia coli, recovery methods |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般工業化回收基因重組大腸桿菌間質蛋白質是採用機械式方法打破細胞,然而此種操作方式會同時釋放其他胞內蛋白質,導致目標產物受到大量雜蛋白之干擾,增加後續純化步驟的複雜度。因此,滲透壓衝擊可能是回收間質蛋白質較佳之選擇。有鑑於此,本研究採取滲透壓衝擊破壞細胞外膜,自大腸桿菌間質回收肌酸酵素,同時探討在滲透壓衝擊細胞前,以鈣離子或鎂離子進行前處理對於肌酸酵素回收量、回收、與純化倍率之效應。
與傳統的滲透壓衝擊比較發現,細胞在滲透壓衝擊前以鈣離子或鎂離子進行前處理可提高肌酸酵素的回收率與純化倍率。研究結果亦顯示,細胞外膜脂多醣上之金屬結合座與鈣或鎂離子之結合並無特異性,且金屬離子與脂多醣有一吸附平衡關係。在放大實驗中發現傳統與改良之滲透壓衝擊法可處理的細胞量分別可達14 與12 g/L。
另外,本研究也比較其他回收方法對肌酸酵素回收之效應,包括以化學試劑處理的化學回收方式與添加溶菌素處理的酵素釋放方式;結果顯示以鈣離子對細胞進行前處理之滲透壓衝擊法是回收大腸桿菌間質酵素的最佳選擇。
Recovery of periplasmic enzymes from Escherichia coli on an industrial scale is normally achieved by mechanically breaking the cells. However, not only periplasmic
enzymes but cytoplasmic proteins were released by mechanical disruption, which increases the complexity of following purification steps. Accordingly, osmotic shock might be a preferable method for recovering periplasmic enzymes. This study described the modification of osmotic shock method for recovering recombinant creatinase from the
periplasm of E. coli. For efficient disruption of the outer membrane, the cells were treated with divalent metal ions (calcium or magnesium ions) before osmotic shock. In addition, the effect of metal ions pretreatment on the recovery and purification factor of creatinase was investigated.
As compared with the conventional osmotic shock, significant improvements on creatinase recovery and purification factor were observed when the cells pretreated with calcium or magnesium ions before the osmotic shock. The results also showed that the binding sites on the outer menbrane for metal ions were nonspecific and there was an
adsorption equilibrium relationship between lipopolysaccharides and ions. In the scale-up experiments, it was found that the maximal capability for traditional and modified osmotic shock methods were 14 and 12 g/L, respectively. In addition, this research discussed the yields of creatinase recovery by chemical permeabilization or lysozyme treatment. It indicated that the modified osmotic shock method with the pretreatment of calcium ions was a preferable choice for recovering periplasmic enzymes from E. coli cells.
Alphen, L. V., Verkleij, A., Leunissen-bijvelt, J., and Lugyenberg, B., “Architecture of the outer membrane of Escherichia coli Ⅲ Protein-lipopolysaccharide complexes in intramembraneous particles,” J. Bacteriol., 134: 1089—1098 (1978).
Ames, G. F. L., Prody, C., Kustu, S., “Simple, rapid, and quantitative release of periplasmic proteins by chloroform,” J. Bacteriol., 160: 1181—1183 (1984).
Ariga, O., Watari, T., Andoh, Y., Fujishita, Y., and Sano, Y., “Release of thermophilic α-Amylase from transformed Escherichia coli by addition of glycine,” J. Ferment. Bioeng., 68: 243—246 (1989).
Boggis, W. M. A., Kenward, M. A., and Brown, M. R. W., “Effects of divalent metal cations in the growth medium upon sensitivity of batch- grown pseudomonas aeruginosa to EDTA or polymyxin B,” J. Appl. Bacteriol., 47: 477—488 (1979).
Braford, M. M., “A rapid and sensitive method for the binding of protein dye principle. The utilizing quantity of protein quantitation of microgram,” Anal. Biochem., 72:248—254 (1976).
Brown, M. R. W., and Melling, J., “Loss of sensitivity to EDTA by Pseudomonas aeruginosa grown under conditions of Mg-limitation,” J. Gen. Microbiol., 54 : 439—444 (1969).
Chang, M.–C., Chang, C.–C., and Chang, J.–C., “Cloning of a creatinase gene from Pseudomonas Putida in Escherichia coli using an indicator plate,” Appl. Environ. Microbiol., 58: 3437—3440 (1992).
Courtesy, H., Nikaido, S., and Nakae, T., “The outer membrane of gram-negative bacteria,” Adv. Microb. Physiol., 20: 163—250 (1979).
David, H., and Henry, W., “Protein release from Escherichia coli cells permeabilized with Guanidine-HCl and Triton X100, ” Biotech. Bioeng., 33: 886—895 (1989).
Duran, A., Cid, V. J., Rye, F., Snyder, M. P., Nombela, C., Sanchez, M., “Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae,” Microbiol. Rev., 59: 345—386 (1995).
Engler, C. R., and Robinson, C. W., “Effect of organism types and growth conditions on cell disruption by impingement, ” Biotechnol. Lett. 3: 83—88 (1981).
Ertan, H., and Erarslan, A., “The isolation of penicillin G acylase from the periplasmic space of a mutant of Escherichia coli ATCC 11105 by various extraction methods,” Trends J. Chem., 19: 290—295 (1995).
French, C., Keshavarz-Moore, E., and Ward, J. M., “Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm,” Enzyme Microb. Technol. 19: 332—338 (1996).
George, G., and Michael, L. S., “Release of periplasmic enzymes and other physiological effects of -lactamase overproduction in Escherichia coli,” Biotech. Bioeng., 32: 741—748 (1988).
Hoeffken, H. W., Knof, S. H., Bartlett, P. A., Huber, R., Moellering, H., and Schumacher, G., “Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from pseudomonas putida,” J. Mol. Biol., 204: 417—433 (1988).
Joseph-Liauzun, E., Leplatois, P., Legoux, R., Guerveno, V., Marchese, E., and Ferrara, P., “Human recombinant interleukin-1β isolated from Escherichia coli by simple osmotic shock,” Gene, 86: 291—295 (1990).
Johnson, B. H., and Hecht, M. H., “Recombinant proteins can be isolated from Escherichia coli by repeated cycles of freezing and thawing,” Bio/Technol. 12:1357—1360 (1994).
Kheirolomoom, A., Ardjmand, M., Fazelinia, H., and Zakeri, A., “Isolation of penicillin G acylase from Escherichia coli ATCC 11105 by physical and chemical treatments,” Biochem. Eng. J., 8: 223—227 (2001).
Koyama, Y. S., Kitao, H., Yamamoto, O. M., and Susuki, E. N., “Cloning and expression of the creatinase gene from Flavobacterium sp. U-188 in Escherichia coli,” Agric. Biol. Chem., 54: 1453—1457 (1990).
Kubio, R., Umakoshi, H., Takagi, N., and Komasawa, I., “Optimal distruption methods for the selective recovery of -galactosidase from Escherichia coli,” J. Ferment. Bioeng., 79: 335—341 (1995).
Leive, L. “The barrier function of the gram-negative envelope,” Ann. N. Y. Acad. Sci., 238, 109—129 (1974).
Maria, M., Concha, G., Javier, A., and Cesar, N., “Protein localization approaches for understanding yeast cell wall biogenesis,” Microsc. Res. Tech., 51: 601—612 (2000).
Michael, J. P., Chan, J. R., Krieg, N., Microbial cell walls and membranes, U.K. 328-342 (1985).
Nancy, G. N., and Heppel, L. A., “The release of enzymes by osmotic shock from Escherichia coli in exponential phase,” J. Biol. Chem., 241: 3055—3062 (1966).
Neu, H. C., and Heppel, L. A., “The release of enzymes from Escherichia coli. by osmotic shock and during the formation of spheroplasts, ” J. Biol. Chem., 240: 3685—3692 (1965).
Novella, I. S., Fargues, C., and Grevillot, G., “Improvement of the extraction of penicillin acylase from Escherichia coli cells by a combined use of chemical methods,” Biotechnol. Bioeng., 44: 379—382 (1994).
Robert, J. F., Brian, K. O., Anton, P., and Middelberg, J., “Chemical treatment of Escherichia coli:1. extraction of intracellular protein from uninduced cells,” Biotechnol. Bioeng., 53: 453—458 (1997).
Schutle, H. and Kula, M. R., “Pilot and process-scale techniques for cell disruption, ” Biotechnol. Appl. Biochem., 12: 599—620 (1990).
Thomas, J. N. and Henry, Y. W., “Rapid protein release from Escherichia coli by chemical permeabilization under fermentation conditions, ” Biotechnol. Bioeng., 39: 732—740 (1992).
Tsuchido, T., Katsui, N., Takeuchi, A., Takano, M., Shibasaki, I., “Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment,” Appl. Environ. Microbiol., 50: 298—303 (1985)
許秉寧,微生物學,杏輝圖書出版社,1986.
劉雨田,新編微生物學,永大書局,1991.
徐維富,“以基因轉殖菌株生產creatinase:醱酵、分離純化及酵素物性與化性探討”,國立成功大學化學工程學系碩士論文,2001
陳麗安,“鈣、鎂離子對回收間質蛋白質的影響”,國立成功大學化學工程學系碩士論文,2002