| 研究生: |
張家誠 Chang, Chia-cheng |
|---|---|
| 論文名稱: |
橫隔板型式與填充混凝土對於鋼梁柱接頭耐震性能影響 Seismic Behavior of H-Beam to Box-Column Connections with Internal/Through Diaphragms and Infilled Concrete |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | H 型鋼梁 、箱型柱 、有限元素分析 、橫隔板 、混凝土填充 |
| 外文關鍵詞: | H-shaped Steel Beam, Box Column, Diaphragm, Concrete Infill, FEA |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高層鋼構常以 H 型鋼梁銲接箱型柱組成主要抗震系統,其耐震性能深受橫隔板型式與混凝土填充配置影響。本文透過有限元素分析,比較「內橫隔板」與「貫穿式橫隔板」在有/無混凝土填充條件下之梁柱接頭行為,並依現行國際規範進行延性與強度檢核。
分析結果顯示:(1)配置橫隔板的試體於大變形階段仍能維持足夠彎矩強度,符合強柱弱梁設計要求;(2)混凝土填充提升接頭初期剛度並改善能量耗散,但對極限強度影響有限;(3)缺乏隔板之接頭易出現柱壁面外挫曲並提早失效,延性明顯不足。
綜合而言,橫隔板能使箱型柱抵抗剪力產生的變形;混凝土填充則可以將應力傳遞至梁腹板,減少柱面應力擴散,並使梁翼板應力集中,提前進入降伏,強化「強柱 – 弱梁」設計理念。研究成果可提供箱型柱梁柱接頭設計之參考,並建議後續結合試驗與參數化分析,以深化設計準則之適用性。
High-rise steel structures commonly adopt H-shaped beam-to-box-column welded joints as their primary seismic force-resisting system. The joint response is strongly influenced by diaphragm detailing and the presence of concrete infill. This study conducts finite-element analyses to compare the seismic behaviour of beam-column connections with either internal diaphragms or through diaphragms, under both concrete-filled and hollow column conditions, and evaluates their ductility and strength in accordance with current international provisions. The results indicate that (1) specimens equipped with diaphragms retain adequate moment capacity at large deformations, thereby satisfying the strong-column–weak-beam requirement; (2) concrete infill significantly increases the initial joint stiffness and enhances energy dissipation, yet has only a limited effect on ultimate strength; and (3) joints without diaphragms are prone to premature out-of-plane buckling of the column wall, leading to early loss of capacity and inadequate ductility.
In summary, diaphragm plates are indispensable for achieving high drift ductility, whereas concrete infill chiefly improves stiffness and seismic resilience. The findings provide practical guidance for designing box-column beam-column joints and highlight the need for complementary full-scale testing and parametric studies to further refine design provisions and ensure their reliability.
[1] Cho, Y. H., Wang, F., Seo, S.-Y., Lee, K., & Kim, T. S. (2024). Experimental and numerical investigation of through-diaphragm in H-shaped steel beam to CFST column connections. Thin-Walled Structures, 199, 111852.
[2] 陳正平(1996年11月18日)。鋼箱法與鋼梁球頭內模澆版/鋼道架設與施工方法探討 [Discussion on construction methods of steel box girder and steel ball-head beam formwork pouring/steel bridge erection]。技師報 (Engineers Times)。
[3] 賴品蓁(2023)。塗佈水性防火漆之鋼梁柱接頭防火安全研究 [Fire safety engineering of steel beam-to-column connections with water-based intumescent fire-resistance mastic coating] [碩士論文,國立成功大學土木工程研究所]。
[4] 康欣愉(2022)。梁腹橫向開孔鋼梁柱接頭耐震與耐火行為研究 [Seismic and fire behavior of a steel beam-to-column connection with two stadium-shaped openings in the beam web] [碩士論文,國立成功大學土木工程研究所]。
[5] 何思妤(2021)。梁腹開孔鋼結構梁柱接頭之結構耐震與火害行為 [Seismic and fire behaviors of steel beam-to-column connections with beam web openings] [碩士論文,國立成功大學土木工程研究所]。
[6] 賴建霖(2007)。鋼骨箱型柱內橫隔板電熱熔渣銲接之有限元素分析 [Finite element analysis of electro-slag welding for diaphragms in steel box column] [碩士論文,國立交通大學土木工程研究所]。
[7] Author, A. A., & Author, B. B. (1985). Title of the article. Journal of Structural Engineering, 111(3), 505–xxx.
[8] Hu, H. T., Huang, C. S., Wu, M. H., & Wu, Y. M. (2003). Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, 129, 1322–1329.
[9] Wriggers, P., & Nackenhorst, U. (2006). Analysis and simulation of contact problems. Springer Verlag.
[10] Baltay, P., & Gjelsvik, A. (1990). Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering, 1, 46–49.
[11] Pallett, P., Gorst, N., Clark, L., & Thomas, D. (2002). Friction resistance in temporary works materials. Concrete, 36, 12–15.
[12] American Institute of Steel Construction. (2016). Prequalified connections for special and intermediate steel moment frames for seismic applications (ANSI/AISC 358-16). Chicago, IL, USA.
[13] American Institute of Steel Construction. (2016). Specification for structural steel buildings (ANSI/AISC 360-16). Chicago, IL, USA.
[14] Federal Emergency Management Agency. (2000). Recommended seismic design criteria for new steel moment-frame buildings (FEMA 350).
[15] ACI-ASCE Committee 352. (1985). Recommendations for design of beam-column joints in monolithic reinforced concrete structures. Journal of the American Concrete Institute, 83(3), 266–283.
[16] American Institute of Steel Construction. (2016). Seismic provisions for structural steel buildings.
[17] 內政部營建署(2010)。鋼結構容許應力設計法規範第十三章: 耐震設計 [Allowable stress design specification for steel structures, Chapter 13: Seismic design]。
[18] American Institute of Steel Construction. (2016). Seismic provisions for structural steel buildings (ANSI/AISC 341-16). Chicago, IL, USA.
[19] Rabbat, B. G., & Russell, H. G. (1985). Friction coefficient of steel on concrete or grout. Journal of Structural Engineering, 111(3), 505–515.
[20] Thai, H.-T. (2024). Beam-to-CFST column joints in steel–concrete composite buildings: A comprehensive review. Structures, 68, 107123.
[21] Li, B.-Y., Yang, Y.-L., Chen, Y.-F., Cheng, W., & Zhang, L.-B. (2018). Behavior of connections between square CFST columns and H-section steel beams. Journal of Constructional Steel Research, 145, 10–27.
[22] Peng, Z., Dai, S. B., Pi, Y. L., Zhang, Y. C., & Huang, J. (2018). Seismic performance of end-plate connections between T-shaped CFST columns and RC beams. Journal of Constructional Steel Research, 145, 167–183.
[23] Deng, E.-F., Wang, Y.-H., Liu, Z., Song, Y.-J., Wang, Z., & Cao, D.-B. (2022). Experimental study and numerical simulation for the seismic performance of an innovative connection between a flat CFST column and an H beam. Buildings, 12(7), 735.
[24] Doung, P., Leelataviwat, S., & Sasaki, E. (2021). Tensile strength and failure mechanism of internal diaphragms in wide flange beam to box column connections with concrete filling. Journal of Building Engineering, 34, 102037.
[25] Habibi, A., Fanaie, N., & Shahbazpanahi, S. (2023). Experimental and numerical investigation of I-beam to concrete-filled tube (CFT) column moment connections with pipe-stiffened internal diaphragm. Journal of Constructional Steel Research, 200, 107648.
[26] China Association for Engineering Construction. (2004). Technical specification for structures with concrete-filled rectangular steel tube members (CECS 159). Beijing: China Planning Press.
[27] Lai, Z., Fischer, E. C., & Varma, A. H. (2019). Database and review of beam-to-column connections for seismic design of composite special moment frames. Journal of Structural Engineering, 145(5), 04019023.
[28] Rong, B., Zhang, Y., Sun, J., & Zhang, R. (2022). Experimental and numerical research on hysteretic behavior of CFST frame with diaphragm-through connections. Journal of Building Engineering, 45, 103529.
[29] Harada, Y., Morita, K., Yokoi, K., & Fujita, K. (2000). Estimation of elastic–plastic behavior of H-beam-to-RHS column connection without diaphragm. Steel Construction Engineering, 7(26), 59–72.
[30] Wang, W., Li, M., Chen, Y., & Jian, X. (2017). Cyclic behavior of end-plate connections to tubular columns with novel slip-critical blind bolts. Engineering Structures, 148, 949–962.
[31] Lee, H.-H. (2018). Finite element simulations with ANSYS Workbench 18. SDC Publications.