簡易檢索 / 詳目顯示

研究生: 吳俊德
Wu, Chun-Te
論文名稱: 三維氧化鋅奈米結構之製備與其應用於染料敏化太陽能電池之研究
Formation of Three-Dimensional ZnO Nanostructures for Use in Dye-sensitized Solar Cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 氧化鋅化學浴沉積法染料敏化太陽能電池
外文關鍵詞: ZnO, chemical bath deposition, dye-sensitized solar cell
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃以兩步驟成長三維(3D)氧化鋅奈米樹狀(nanodendrite,ND)與氧化鋅奈米仙人掌(nanocactus,NC)結構,第一步驟皆為利用化學浴沉積法(Chemical bath deposition,CBD),於FTO (fluorine-doped SnO2)基板上成長氧化鋅奈米線(nanowire,NW) 陣列,於第二步驟中,在無添加任何包覆劑之下,以室溫化學浴沉積法可成長ZnO NC,於100 ℃化學浴沉積法可成長ZnO ND。進一步利用無鹼化學浴沉積法可於奈米樹狀結構中成長層狀物結構/氧化鋅奈米顆粒,以形成一同時具有良好的電子傳輸特性與高表面積之三維奈米樹狀-奈米顆粒複合薄膜。根據高解析穿透式電子顯微鏡分析ZnO ND與ZnO NC,顯示主幹與側枝皆為單晶結構。根據光強度調制光電流分析儀(intensity modulated photocurrent spectroscopy,IMPS)分析ZnO NW與ZnO ND,顯示ZnO ND之電子傳輸特性與ZnO NW相近。厚度3.5 μm之複合薄膜作為染料敏化太陽能(dye-sensitized solar cell,DSSC)光電極,其太陽能效率可達3.74 %,比相同厚度之二氧化鈦奈米顆粒電池效率高。另外,以室溫化學浴法修飾ZnO NW而得之ZnO NC作為光電極時,效率即可大幅提升,並且有助於電子傳輸。

    3D ZnO nanodendrite (ND) and ZnO nanocactus (NC) arrays have been synthesized on FTO substrates using a simple wet-chemical route, i.e., the aligned and high-density ZnO nanowire (NW) array was first synthesized on the FTO substrate by an aqueous chemical bath deposition (CBD). The ZnO NCs and ZnO NDs were formed using an aqueous CBD at room-temperature and 100 ℃ without any capping agent, respectively. ZnO nanoparticels (NPs) were further bottom-up grown within the interstices of the ZnO NDs using a base-free CBD method to form ZnO ND/NP composite film. HR TEM characterization reveals that the same as the primary ZnO NW, the branch is single crystalline and grows along [0001] as well. Intensity modulated photocurrent spectroscopy (IMPS), indicated the electron transport time in the ZnO ND dye-sensitized solar cell (DSSC) is almost identical to that in the ZnO NW cell. With the thickness of 3.5 μm, a 3.74 % of the solar efficiency has been achieved using the ZnO ND/NP composite film as photoanode, which is superior to that of the TiO2 NP cell. In addition, the efficiency and electron transport properties of the ZnO NW DSSC were significantly enhanced by forming the nanocactus structure through a simple room-temperature CBD.

    目錄 第一章 緒論............................................................................................1 1-1 前言............................................................................................1 1-2 氧化鋅奈米結構........................................................................2 1-3 染料敏化太陽能電池................................................................3 1-4 研究動機....................................................................................4 第二章 文獻回顧....................................................................................6 2-1 染料敏化太陽能電池................................................................6 2-1-1 工作原理.............................................................................6 2-1-2 直接路徑的電子傳輸之奈米結構...................................10 2-1-2-1 氧化鋅奈米線............................................................11 2-1-2-2 氧化鋅單晶多孔結構................................................13 2-1-3 複層式氧化鋅奈米結構...................................................18 2-1-3-1 氧化鋅奈米分枝狀結構............................................18 2-1-3-2 氧化鋅奈米複合結構................................................23 2-2 電化學交流阻抗分析..............................................................28 2-2-1 基本原理...........................................................................28 2-2-2 應用於染料敏化太陽能電池...........................................32 2-3 光強度調制光電流分析與光強度調制光電壓分析..............37 第三章 實驗步驟與研究方法..............................................................40 3-1 研究材料..................................................................................40 3-1-1 氧化鋅奈米結構薄膜沉積之材料...................................40 3-1-2 組裝染料敏化太陽能電池之材料...................................40 3-2 實驗流程..................................................................................42 3-2-1 基板前處理與氧化鋅晶種披覆.......................................43 3-2-2 氧化鋅奈米線陣列之沉積...............................................43 3-2-3 氧化鋅奈米樹狀結構陣列之沉積...................................44 3-2-4 氧化奈米鋅樹枝-奈米顆粒複合薄膜之沉積..................44 3-2-5 氧化鋅奈米樹枝-奈米顆粒複合薄膜之退火處理..........45 3-2-6 氧化鋅奈米仙人掌結構陣列之沉積...............................45 3-2-7 染料敏化太陽能電池之組裝...........................................46 3-3 分析與鑑定..............................................................................47 3-3-1 掃描式電子顯微鏡分析...................................................47 3-3-2 穿透式電子顯微鏡分析...................................................49 3-3-3 X光繞射分析....................................................................52 3-4 染料敏化太陽能電池之光伏量測與電子特性分析..............54 3-4-1 太陽能效率量測...............................................................54 3-4-2 電化學交流阻抗分析儀...................................................55 3-4-3 光強度調制光譜分析.......................................................56 第四章 三維擬單晶氧化鋅奈米樹枝/奈米顆粒複合材料之合成....57 4-1 氧化鋅奈米樹枝結構..............................................................57 4-1-1 奈米樹狀結構之成長與分析...........................................57 4-1-2 氧化鋅奈米樹狀敏化太陽能電池之光伏與電子傳輸特性.......................................................................................62 4-1-2-1 奈米結構效應............................................................62 4-1-2-2 退火效應....................................................................66 4-2 氧化鋅奈米樹枝/奈米顆粒複合材料.....................................69 4-2-1 奈米樹狀-奈米顆粒複合薄膜之成長與分析.................69 4-2-2 氧化鋅奈米樹狀-奈米顆粒複合薄膜染料敏化太陽能電池之光伏與電子傳輸特性...............................................74 4-2-2-1 快速電子傳輸特性....................................................74 4-2-2-2 退火效應....................................................................79 4-3 結論..........................................................................................84 第五章 以室溫化學浴法修飾氧化鋅奈米結構及其應用於染料敏化 太陽電池之研究......................................................................85 5-1 氧化鋅奈米仙人掌結構之成長與分析..................................85 5-1-1 攪拌時間對氧化鋅奈米仙人掌表面型態之影響.........85 5-1-2 氧化鋅奈米仙人掌結構之分析.....................................87 5-2 氧化鋅奈米樹枝結構之成長與分析......................................92 5-2-1 反應時間對成長氧化鋅奈米樹枝結構之影響.............92 5-2-2 反應溫度對成長氧化鋅奈米樹枝結構之影響.............94 5-3 氧化鋅奈米結構於染料敏化太陽能電池之應用..................96 5-3-1 修飾時間效應.................................................................96 5-3-2 退火效應.......................................................................101 5-3-3 側枝成長時間效應.......................................................105 5-4 結論........................................................................................110 第六章 總結論....................................................................................111 第七章 參考文獻................................................................................113 表目錄 第一章 表1.1 氧化鋅與二氧化鈦物理性質之比較...........................................2 第二章 表2.1 不同敏化光電極染料敏化太陽能電池之光伏參數與利用交流阻抗分析所得之傳輸參數.........................................................36 第四章 表4.1 氧化鋅奈米線陣列(ZnO NW)與奈米樹狀結構(ZnO ND)光電極之光伏參數,照光面積為0.16 cm2.........................................64 表4.2 氧化鋅奈米線陣列(ZnO NW)與奈米樹狀結構(ZnO ND)經模擬之電子傳輸參數.....................................................................64 表4.3 氧化鋅奈米樹狀染料敏化太陽能電池之光伏參數,其中ZnO ND-400與ZnO ND-600分別為經400 ℃及600 ℃退火理,照光面積為0.16 cm2.......................................................................67 表4.4 對應圖4.14之氧化鋅奈米樹狀-奈米顆粒複合結構(ZnO ND-600 NP)與二氧化鈦奈米顆粒(TiO2 NP)電池光伏參數....75 表4.5 氧化鋅奈米樹狀結構-奈米顆粒複合薄膜(ZnO ND-600 NP)與二氧化鈦奈米顆粒薄膜(TiO2 NP)之電子傳輸時間與電子生命週期隨光強度改變之數值.........................................................77 表4.6 不同處理條件之氧化鋅奈米樹狀結構-奈米顆粒複合薄膜電池之光伏參數.................................................................................81 表4.7 未處理與以120 ℃處理4分鐘之複合薄膜電池電子傳輸時間與電子生命週期隨光強度改變之數值.....................................83 第五章 表5.1 對應圖5.9之氧化鋅奈米線陣列(ZnO NW)與奈米仙人掌(ZnO NC)染料敏化太陽能電池之光伏參數......................................98 表5.2 對應圖5.10之氧化鋅奈米線(ZnO NW)與奈米仙人掌(ZnO NC)染料敏化太陽能電池之電子傳輸時間隨光強度變化之數值...............................................................................................100 表5.3 對應圖5.11之經600 ℃退火與未退火處理氧化鋅奈米仙人掌染料敏化太陽能電池之光伏參數...........................................102 表5.4 經600 ℃退火與未退火處理之氧化鋅奈米仙人掌染料敏化太陽能電池經模擬之電子傳輸參數...........................................104 表5.5 對應圖5.15之不同側枝成長時間之氧化鋅奈米樹狀結構染料敏化太陽能電池之光伏參數...................................................106 表5.6 對應圖5.17之不同側枝成長時間之氧化鋅奈米樹狀結構染料敏化太陽能電池之電子傳輸時間隨光強度變化之數值.......108 圖目錄 第一章 圖1.1 ZnO wurtizte結構.........................................................................2 第二章 圖2.1 染料敏化太陽能電池的工作原理...............................................7 圖2.2 太陽能電池的電流密度-電壓特性曲線......................................9 圖2.3 氧化鋅奈米線染料敏化太陽能電池及SEM側面圖,刻度為5 μm................................................................................................12 圖2.4 奈米線與奈米顆粒電池效率比較圖.........................................13 圖2.5 在無Eosin Y下電化學沉積的氧化鋅奈米柱(a),ZnO/Eosin Y混成薄膜(b為俯視圖,b´為側面圖)及浸泡稀釋的KOH水溶液後脫附Eosin Y之多孔性氧化鋅(c為俯視圖,c´為側面圖) 之SEM圖.........................................................................................15 圖2.6 ZnO/Eosin Y混成薄膜TEM圖,(A)低倍明視野圖及選區繞射圖,(B)高解析TEM圖...............................................................15 圖2.7 ZnO/Eosin Y混成薄膜3D-TEM圖。內部結構由不同切面2D-TEM疊印而成。電子在奈米線傳輸示意圖,由Zn2+、O2及Eosin Y三種成分經電化學自組裝(self-assemble) 構成 ZnO/Eosin Y混成薄膜...............................................................16 圖2.8 ZnO/Eosin Y混成薄膜經鹼性處理後脫附染料分子,再吸附染料分子,(B)脫附Eosin Y及再吸附Eosin Y之吸收圖譜及IPCE.............................................................................................17 圖2.9 ZnO/Eosin Y混成薄膜與(b)ZnO奈米顆粒瞬變光電流(photocurrent transients)之比較。兩者電子傳輸性質示意圖,單晶孔洞結構無晶界,電子傳輸快。奈米顆粒有許多缺陷,電子傳輸慢.....................................................................................17 圖2.10 氧化鋅(a)奈米柱與(b)奈米花SEM圖.......................................19 圖2.11 氧化鋅奈米柱與奈米花示意圖.................................................19 圖2.12 氧化鋅奈米結構SEM圖: (a)氧化鋅奈米柱,(b)氧化鋅奈米樹枝.................................................................................................21 圖2.13 不同ω 值下所成長的氧化鋅奈米結構,(a1)為ω = 1、(a2)為ω = 1.4與(a3) 為ω = 2...................................................................21 圖2.14 成長氧化鋅奈米樹步驟示意圖,(b)氧化鋅奈米線,(c)沉積晶種層於氧化鋅奈米線與(d)氧化鋅奈米樹.................................22 圖2.15 分枝的氧化鋅奈米線以隨機分布成長.....................................23 圖2.16 ZnO奈米線陣列於無鹼化學浴成長奈米粒14-16小時之俯視與側視SEM圖。(a)-(c) 14小時,(d)-(f) 15小時,(g)-(i) 16小時.................................................................................................24 圖2.17 奈米線與奈米粒界面之高解析度TEM圖。(b)為圖(a)中方形區域之放大高解析度TEM圖,插圖為經快速傅立葉轉換(fast Fourier transform,FFT)之圖譜,其中摽示白色字體乃為ZnO奈米線之繞射點,黑色字體則為ZnO奈米粒之繞射點。(c)與(d)為另兩個奈米線-奈米粒界面之高解析度TEM圖..............25 圖2.18 複層式氧化鋅奈米片-奈米線之SEM圖...................................26 圖2.19 氧化鋅奈米片-奈米線之奈米線TEM圖與選區繞射圖,(b)對應方形區域之高解析TEM圖....................................................27 圖2.20 氧化鋅奈米片與氧化鋅奈米片-奈米線染料敏化太陽能電池之電流密度-電壓特性曲線圖........................................................27 圖2.21 RC串聯與(b)RC並聯的模擬Nyquist圖...................................31 圖2.22 DSSCs等效電路圖,其中(a)為典型的等效電路圖,(b)為在高偏壓下的簡化電路圖.................................................................32 圖2.23 二氧化鈦染料敏化太陽能電池之典型Nyquist圖。菱形標誌為實驗數據,實線為最適化之結果...........................................33 圖2.24 於交流阻抗分析中所使用之染料敏化太陽能電池等效電路圖。(b)不同敏化光電極之染料敏化太陽能電池之實驗Nyquist圖,與利用之等效電路所模擬之曲線。其中實驗數據I、II與III光電極分別為約5.5 μm厚紅汞敏化氧化鋅奈米線陣列、氧化鋅奈米線/奈米顆粒複合薄膜與N719敏化二氧化鈦奈米顆粒薄膜.........................................................................................35 圖2.25 ZnO/eosin Y光電極之IMPS圖,分別在光強度為0.89 mWcm-2()、0.50 mWcm-2()與0.29 mWcm-2()下量測。(▼,■,▲)各自表示為6.3 kHz、251 Hz與1Hz。(b) ZnO/eosin Y光電極之IMVS圖,分別在光強度為2.6 mWcm-2()、0.8 mWcm-2()與0.4 mWcm-2()下量測。(●,▼,■)各自表示為100、10與1Hz..............................................................................39 第三章 圖3.1 D149染料分子結構式................................................................40 圖3.2 實驗流程圖.................................................................................42 圖3.3 染料敏化太陽能電池組裝示意圖.............................................46 圖3.4 本研究所利用之材料分析技術.................................................48 圖3.5 掃描式電子顯微鏡成像原理之示意圖.....................................49 圖3.6 穿透式電子顯微鏡中試片、後聚焦平面與像平面相對位置及電子束路徑圖.............................................................................51 圖3.7 明視野與暗視野成像方法之示意圖.........................................51 圖3.8 粉末X光繞射法的幾何關係圖.................................................53 圖3.9 太陽光模擬器裝置圖.................................................................54 圖3.10 染料敏化太陽能電池之等效電路圖.........................................55 第四章 圖4.1 氧化鋅奈米線陣列與(b)氧化鋅奈米樹狀結構之俯視及剖面SEM圖.........................................................................................58 圖4.2 氧化鋅奈米樹狀結構、奈米線陣列與FTO基板之XRD圖譜。(b)奈米樹狀結構與奈米線陣列XRD圖譜之比較,其中I為氧化鋅奈米樹狀結構之XRD圖譜,II為奈米線陣列之XRD圖譜,以FTO繞射強度為基線.......................................................59 圖4.3 氧化鋅奈米樹狀結構之低倍明視野TEM圖。(b)與(c)各為圖(a)中方形區域之高解析TEM圖,其中(b)為主幹表面區域與插圖為其選區繞射圖,(c)為主幹與分枝之界面處。(d)為對應圖(c)之選區繞射圖譜,T與B分別代表主幹及分枝,虛線表示T 與B(001)成長方向相同.................................................61 圖4.4 於AM1.5(100mWcm-2)太陽光下量測之I-V曲線圖,(I)為氧化鋅奈米線陣列(ZnO NW),(II)為氧化鋅奈米樹狀結構(ZnO ND),照光面積為0.16 cm2..........................................................63 圖4.5 氧化鋅奈米線陣列與奈米樹狀結構之交流阻抗分析nyquist圖。記號(■)為奈米線陣列(ZnO NW),記號(♦)為奈米樹狀結構(ZnO ND),實線則為模擬之結果...........................................64 圖4.6 不同光強度下以IMPS量測電子之傳輸時間,其中標示(■)為奈米線陣列與標示(●)為奈米樹狀結構....................................66 圖4.7 電子於氧化鋅奈米線與奈米樹狀結構中傳輸之示意圖.........66 圖4.8 氧化鋅奈米樹狀結構(ZnO ND) 之I-V曲線圖,(I)為400 ℃退火處理(ZnO ND-400),(II)為600 ℃退火處理(ZnO ND-600),照光面積為0.16 cm2...................................................................68 圖4.9 不同光強度下以IMPS量測電子之傳輸時間,其中標示(■)為經400 ℃退火處理之奈米樹狀結構(ZnO ND-400),標示(●)為600 ℃處理之奈米樹狀結構(ZnO ND-600) ........................68 圖4.10 氧化鋅奈米樹狀-奈米顆粒複合薄膜之俯視與剖面SEM圖。(b)氧化鋅奈米線-奈米顆粒複合薄膜與(c)氧化鋅奈米樹狀-奈米顆粒複合薄膜低倍率SEM圖....................................................70 圖4.11 成長20.5小時之氧化鋅奈米樹狀-奈米顆粒複合薄膜、奈米樹狀結構與FTO基板之XRD圖譜...............................................72 圖4.12 氧化鋅奈米樹狀-奈米顆粒複合薄膜之低倍明視野TEM圖與插圖為對應之選區繞射圖。(b)圈選氧化鋅(002)、(100)與(101)圓圖部份繞射點之相對應暗視野TEM圖................................72 圖4.13 氧化鋅奈米樹狀-奈米顆粒複合薄膜之低倍明視野TEM圖。(b)為圖(a)方形區域內的主幹、分枝與奈米顆粒界面之高解析度TEM圖,(c)與(d)各為對應圖(b)方形區域之快速傅立葉轉換之圖譜。(e)為圖(a)中另一主幹與分枝界面之高解析度TEM圖,(f)與(g)分別對應分枝與主幹的選區繞射圖譜。(h)為圖(a)典型的氧化鋅奈米樹狀-奈米顆粒複合薄膜之選區繞射圖譜........73 圖4.14 各光電極之I-V曲線圖,其中(I)為D149敏化之氧化鋅奈米樹狀-奈米顆粒複合薄膜(ZnO ND-600 NP),(II)為N719敏化之二氧化鈦奈米顆粒薄膜(TiO2 NP)。光電極厚度皆為3.5 μm,照光面積為0.16 cm2.......................................................................75 圖4.15 電子傳輸時間(●、■)與電子生命週期(○、□)隨光強度之變化圖,其中方形標誌為氧化鋅奈米樹狀結構-奈米顆粒複合薄膜(ZnO ND-600 NP),原形標誌為二氧化鈦奈米顆粒薄膜(TiO2 NP)...............................................................................................77 圖4.16 電子於二氧化鈦奈米顆粒薄膜電極內之電子傳輸機制.........78 圖4.17 電子於氧化鋅奈米樹狀-奈米顆粒複合薄膜光電極內可能之傳輸機制.........................................................................................78 圖4.18 不同處理條件之氧化鋅奈米樹狀結構-奈米顆粒複合薄膜電池之I-V曲線圖,其中(I)未經退火處理、(II)以120 ℃處理2分鐘、(III)以120 ℃處理4分鐘、(IV) 120 ℃處理6分鐘與(V)以200 ℃處理1.5分鐘。厚度皆為3.5 μm,照光面積為0.16 cm2...............................................................................................80 圖4.19 電子傳輸時間(■、▲)與電子生命週期(□、△)隨光強度之變化圖,其中方形標誌為未處理之複合薄膜(as-prepared)電池,三角形標誌為以120 ℃處理4分鐘之複合薄膜(120℃ 4min)電池.................................................................................................82 圖4.20 電子於未退火與退火後之複合薄膜中可能的電子傳輸示意圖................................................................................................83 第五章 圖5.1 氧化鋅奈米仙人掌之俯視與剖面SEM圖。(a)-(c)分別為將氧化鋅奈米線陣列於反應溶液中攪拌5(ZnO NC-5)、10(ZnO NC-10)與20(ZnO NC-20)分鐘之奈米仙人掌...........................86 圖5.2 氧化鋅奈米仙人掌(ZnO NC-20)經600 ℃退火處理後之剖面與俯視SEM圖............................................................................87 圖5.3 氧化鋅奈米仙人掌(ZnO NC-20)、奈米線陣列與FTO基板之XRD圖譜。(b)奈米仙人掌與奈米線陣列XRD圖譜之比較,其中(I)為奈米仙人掌(ZnO NC),(II)為奈米線陣列(ZnO NW)。以FTO最強繞射鋒作為基準.....................................................88 圖5.4 圖5.4 (a)氧化鋅奈米仙人掌結構之低倍明視野TEM圖,圖(b)為圖(a)中主幹與側枝界面之高解析度TEM圖及插圖為對應之選區繞射圖。(c)為另一奈米仙人掌結構之低倍明視野TEM圖,圖(d)為圖(a)中主幹與側枝界面之高解析度TEM圖及插圖為對應之選區繞射圖.................................................................90 圖5.5 初鍍之奈米線低倍率明視野TEM圖,(b)對應(a)之高倍率TEM圖與插圖為其選區繞射圖譜。(c)以0.057 M醋酸鋅與0.5 M氫氧化鈉水溶液浸泡氧化鋅奈米線陣列2分鐘之低倍率明視野TEM圖。(d)為圖(c)紅色方形區域之較高倍率TEM圖與插圖為其對應之選區繞射圖譜。(e)與(f)分別為區域I及II之高解析度TEM圖................................................................................91 圖5.6 氧化鋅奈米樹枝結構之俯視與剖面SEM圖。其中圖(a)、(b)與(c)分別為於100 ℃下反應30 min(ZnO ND-30)、60 min(ZnO ND-60)與90 min(ZnO ND-90)...................................................93 圖5.7 氧化鋅奈米樹枝結構成長演進之示意圖.................................94 圖5.8 氧化鋅奈米樹狀結構之俯視與剖面SEM圖,(a)、(b)與(c)別為在70、85與100 ℃下反應90分鐘.............................................95 圖5.9 氧化鋅奈米線陣列(ZnO NW)與奈米仙人掌(ZnO NC)染料敏化太陽能電池之I-V特性曲線圖。其中ZnO NC-30、ZnO NC-10與ZnO NC-20為分別室溫修飾ZnO NW所得,電池厚度為3.3 μm,照光面積為0.16 cm2...........................................................98 圖5.10 利用IMPS量測之氧化鋅奈米線(ZnO NW)與奈米仙人掌(ZnO NC)染料敏化太陽能電池之電子傳輸時間與光強度變化之關係圖。其中ZnO NC-30、ZnO NC-10與ZnO NC-20為為以室溫化學浴修飾ZnO NW所得...................................................100 圖5.11 電子於未退火處理之氧化鋅奈米線光電極內之可能傳輸機制...............................................................................................101 圖5.12 以600 ℃退火與(II)未經退火處理之氧化鋅奈米仙人掌染料敏化太陽能電池之I-V特性曲線圖。電池厚度為3.3 μm,照光面積為0.16 cm2.....................................................................102 圖5.13 氧化鋅奈米仙人掌之交流阻抗分析nyquist圖。記號(■)為經600 ℃退火處理,記號(●)為未經退火處理,實線則為模擬之結果...........................................................................................103 圖5.14 經600℃退火與初鍍之氧化鋅奈米樹狀結構染料敏化太陽能電池之電子傳輸時間隨光強度變化關係圖...........................104 圖5.15 不同側枝成長時間之氧化鋅奈米樹狀結構染料敏化太陽能電池之I-V曲線特性圖。其中I、II、III與IV分別為側枝成長時間30(ZnO ND-30)、60(ZnO ND-60)、90(ZnO ND-90)及側枝成長30分鐘後再室溫修飾20分鐘(ZnO ND-30/NC-20) ..........106 圖5.16 側枝成長30分鐘後,再室溫修飾20分鐘(ZnO ND-30/NC-20)之剖面與俯視SEM圖..............................................................107 圖5.17 不同側枝成長時間之氧化鋅奈米樹狀結構染料敏化太陽能電池之電子傳輸時間隨光強度變化關係圖。其中I、II、III與IV分別為側枝成長時間30(ZnO ND-30)、60(ZnO ND-60)、90(ZnO ND-90)及側枝成長30分鐘後再室溫修飾20分鐘(ZnO ND-30/NC-20) ..........................................................................108 圖5.18 電子於不同成長側枝時間之氧化鋅奈米樹狀結構中可能之電子傳輸機制..............................................................................109

    [1] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao. ZnO nanostructures for dye sensitized solar cells. Adv. Mater. 21, 1-22 (2009)
    [2] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides. Science. 291, 1947-1949 (2001)
    [3] J. J. Wu, S. C. Liu. Low temperature growth of well aligned ZnO nanorod by chemical vapor deposition. Adv. Mater. 14, 215-218 (2002)
    [4] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren. ZnO nanobrides and Nanonails. Nano. Lett. 3, 235-238 (2003)
    [5] S. Yamabi, H. Imai. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12, 3773-3778 (2002)
    [6] L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solution. Adv. Mater. 15, 464-466 (2003)
    [7] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654-3656 (2004)
    [8] D.I. Suh, S.Y. Lee, J.H. Hyung, T.H. Kim, S.K. Lee. Multiple ZnO nanowires field effect transistors. J. Phys. Chem. C 112, 1276–1281 (2008)
    [9] Z.L. Wang, J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)
    [10] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, D. P. Yu. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144-146 (2003)
    [11] C.S. Lao, M.C. Park, Q. Kuang, Y.L. Deng, A.K. Sood, D.L. Polla, Z.L. Wang. Giant enhancement in UV response of ZnO nanobelts by polymer surface functionalization, J. Am. Chem. Soc. 129, 12096–12097 (2007)
    [12] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon1, R. Noufi. Progress toward 20% efficiency in Cu(In,Ca)Se2 polycrystalline thin film solar cells. Prog. Photovolt: Res. Appl. 7, 311-316 (1999)
    [13] L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus, H. W. Schock. ZnO/CdS/CuInSe2 thin film solar cells with improved performance. Appl. Phys. Lett. 62, 597-599 (1993)
    [14] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang. Nanowire dye sensitized solar cells. Nat. Mater. 4, 455-450 (2005)
    [15] V. Noack, H. Weller, A. Eychmüller. Electron transport in particulate ZnO electrodes: a simple approach. J. Phys. Chem. B. 106, 8514–8523 (2002)
    [16] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307–11315 (2003)
    [17] P. Wagner, R. Helbig. Hall effect and anisotropy of the mobility of the electrons in zinc oxide. J. Phys. Chem. Sol. 35, 327–335 (1974)
    [18] M. A. Green, K. Emery, D. L. King. Solar Cell Efficiency Tables (Version 29). Prog. Photovolt: Res. Appl. 15, 35–40 (2007)
    [19] B. O’Regan, M. Grätzel. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737-740 (1991)
    [20] P. Guo, M.A. Aegerter. Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process. Thin Solid Films. 351, 290-294 (1999)
    [21] J. Liu,T. Luo, S. Mouli T, F. Meng, B. Sun, M. Lia , J. Liu. A novel coral like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye sensitized solar cell application. Chem. Commun., 46, 472–474 (2010)
    [22] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng., R. 63, 81-99 (2009).
    [23] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida. Role of electrolytes on charge recombination in dye sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple J. Phys. Chem. B 109, 3480-3487 (2005)
    [24] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, Shaik M. Zakeeruddin, M. Grätzel. Highly efficient light harvesting ruthenium sensitizer for thin-film dye sensitized solar cells. ACS Nano 3, 3103-3109 (2009)
    [25] H. J. Snaith. Estimating the maximum attainable efficiency in dye sensitized solar cells. Adv. Funct. Mater. 20, 13-19 (2010)
    [26] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank. Influence of the percolation network geometry on electron transport in dye sensitized titanium dioxide solar cells. J. Phys. Chem. B 107, 7759-7767 (2003)
    [27] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye sensitized solar cells. J. Phys. Chem. B 108, 8106-8118 (2004)
    [28] J. Nelson, R. E. Chandler. Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 248, 1181–1194 (2004)
    [29] T. Yoshida, J. B. Zhang, D. Komatsu, et al. Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19, 17-43 (2009)
    [30] T. Yoshida, K. Miyamoto, N. Hibi, T. Sugiura, H. Minoura, D. Schlettwein, T. Oekermann, G. Schneider, D. Wöhrle. Self assembled growth of nano particulate porous ZnO thin film modified by 2,9,16,23-tetrasulfophthalocyanatozinc(II) by one-step electrodeposition. Chem. Lett. 27, 599-600 (1998)
    [31] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura. Electrochemical self-assembly of nanoporous ZnO/eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 12, 1214-1217 (2000)
    [32] T. Yoshida, T. Oekermann, K. Okabe, D. Schlettwein, K. Funabiki, H. Minoura. Cathodic Electrodeposition of ZnO/eosinY hybrid thin films from dye added zinc nitrate bath and their photoelectrochemical characterizations. Electrochemistry 70, 470-487 (2002)
    [33] H. Minoura, T. Yoshida. Electrodeposition of ZnO/dye hybrid thin films for dye-sensitized solar cells. Electrochemistry 76, 109-117 (2008)
    [34] C. Y. Jiang, X. W. Sun, G. Q. Lo, and D. L. Kwong, J. X. Wang. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phy. Lett. 90, 263501 (2007)
    [35] Y. S. Fu, J. Sun, Y. Xie, J. Liu, H. L. Wang, X. W. Du. ZnO hierarchical nanostructures and application on high efficiency dye sensitized solar cells. Mater. Sci. Eng., B. 166, 196-202 (2010)
    [36] X.D. Gao, X.M. Li, S. Zhang, W.D. Yu, J.J. Qiu, J. ZnO submicron structures of controlled morphology synthesized in zinc-hexamethylenetetramine-ethylenediamine aqueous system. Mater. Res. 22, 1815-1823 (2007)
    [37] T.L. Sounart, J. Liu, J.A. Voigt, J.W.P. Hau, E.D. Spoerke, Z.R. Tian, Y.B. Jiang. Sequential nucleation and growth of complex nanostructured films. Adv.Funct. Mater. 16, 335-344 (2006)
    [38] B. Liu, H. Zeng. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196-4204 (2004)
    [39] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, J. Morphological control of ZnO nanostructures by electrodeposition. Phys. Chem. B 109, 13519-13522 (2005)
    [40] Y. Tak, K. Yong. Controlled growth of well aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263-19269 (2005)
    [41] R.B. Peterson, C.L. Fields, B.A. Gregg. Epitaxial chemical deposition of ZnO nanocolumns from NaOH. Langmuir 20, 5114-5118 (2004)
    [42] H. M. Cheng, W. H. Chiu, C. H. Lee, S Y. Tsai, W. F. Hsieh. Formation of branched ZnO nanowires from solvothermal method and dye sensitized solar cells applications. J. Phys. Chem. C 112, 16359–16364 (2008)
    [43] C. H. Ku, H. H. Yang, G. R. Chen, J. J. Wu. Wet chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film. Crystal Growth & Design, 8, 283-290 (2008)
    [44] E. Hosono, S .Fujihara, T. Kimura, H. Imai. Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J. Colloid Interface Sci. 272, 391 (2004)
    [45] H. Morioka, H. Tagaya, M. Karasu, J. I. Kadokawa, K. Chiba. Effects of Zinc on the new preparation method of hydroxy double salts. Inorg. Chem. 38, 4211-4216 (1999)
    [46] R. Q. Song, A. W. Xu, B. Deng, Q. Li, G. Y. Chen. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv. Funct. Mater. 17, 296–306 (2007)
    [47] F. Xu, M. Dai, Y. Lu, L. Sun. Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye sensitized solar cells. J. Phys. Chem. C 114, 2776–2782 (2010)
    [48] F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu. Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater. Des. 30, 1704-1711 (2009)
    [49] F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu. Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. J. Phys. Chem. C 113, 1052-1059 (2009)
    [50] J. Das, I. R. Evans, D. Khushalani. Zinc Glycolate: A Precursor to ZnO. Inorg. Chem. 48, 3508-3510 (2009)
    [51] J. W. Zhang, P. L. Zhu, J. H. Li, J. M. Chen, Z. S. Wu, Z. J. Zhang. Fabrication of octahedral shaped polyol based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single crystal ZnO nanoparticles. Cryst. Growth Des. 9, 2329-2334 (2009)
    [52] Q. L. Huang, M. Wang, H. X. Zhong, X. T. Chen, Z. L. Xue, X. Z. You. Netlike nanostructures of Zn(OH)F and ZnO: synthesis, characterization and properties. Cryst. Growth Des. 8, 1412-1417 (2008)
    [53] A. J. Bard, L. F. Faulkner. Electrochemical methods-Fundamentals and applications. John Wiley & Sons 368, (2001)
    [54] J. Bisquert. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325-333 (2002)
    [55] F. F. Santiago, J. Bisquert, G. G. Belmonte, G. Boschloo, A. Hagfeldt. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells. 87, 117–131 (2005)
    [56] C. H. Ku, J. J. Wu. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phy. Lett. 91, 093117 (2007)
    [57] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda. Determination of parameters of electron transport in dye sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872-13880 (2006)
    [58] T. Oekermann, T. Yoshida, H. Minoura, K. G. U. Wijayantha, L. M. Peter. Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/Dye hybrid films. J. Phys. Chem. B 108, 8364-8370 (2004)
    [59] G. Franco, L. M. Peter, E. A. Ponomarev. Detection of inhomogeneous dye distribution in dye sensitized nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem. Commun. 1, 61–64 (1999)
    [60] T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, B. McKenzie. Secondary nucleation and growth of ZnO. J. AM. CHEM. SOC. 129, 15786-15793 (2007)
    [61] Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu. Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430–3435 (2009)
    [62] H. J. Snaith, A. Petrozza, S. Ito, H. Miura, M. Grätzel. Charge Generation and Photovoltaic Operation of Solid-State Dye-Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene-Based Sensitizer. Adv. Funct. Mater. 19, 1810–1818 (2009)

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE