研究生: |
吳俊德 Wu, Chun-Te |
---|---|
論文名稱: |
三維氧化鋅奈米結構之製備與其應用於染料敏化太陽能電池之研究 Formation of Three-Dimensional ZnO Nanostructures for Use in Dye-sensitized Solar Cells |
指導教授: |
吳季珍
Wu, Jih-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 氧化鋅 、化學浴沉積法 、染料敏化太陽能電池 |
外文關鍵詞: | ZnO, chemical bath deposition, dye-sensitized solar cell |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃以兩步驟成長三維(3D)氧化鋅奈米樹狀(nanodendrite,ND)與氧化鋅奈米仙人掌(nanocactus,NC)結構,第一步驟皆為利用化學浴沉積法(Chemical bath deposition,CBD),於FTO (fluorine-doped SnO2)基板上成長氧化鋅奈米線(nanowire,NW) 陣列,於第二步驟中,在無添加任何包覆劑之下,以室溫化學浴沉積法可成長ZnO NC,於100 ℃化學浴沉積法可成長ZnO ND。進一步利用無鹼化學浴沉積法可於奈米樹狀結構中成長層狀物結構/氧化鋅奈米顆粒,以形成一同時具有良好的電子傳輸特性與高表面積之三維奈米樹狀-奈米顆粒複合薄膜。根據高解析穿透式電子顯微鏡分析ZnO ND與ZnO NC,顯示主幹與側枝皆為單晶結構。根據光強度調制光電流分析儀(intensity modulated photocurrent spectroscopy,IMPS)分析ZnO NW與ZnO ND,顯示ZnO ND之電子傳輸特性與ZnO NW相近。厚度3.5 μm之複合薄膜作為染料敏化太陽能(dye-sensitized solar cell,DSSC)光電極,其太陽能效率可達3.74 %,比相同厚度之二氧化鈦奈米顆粒電池效率高。另外,以室溫化學浴法修飾ZnO NW而得之ZnO NC作為光電極時,效率即可大幅提升,並且有助於電子傳輸。
3D ZnO nanodendrite (ND) and ZnO nanocactus (NC) arrays have been synthesized on FTO substrates using a simple wet-chemical route, i.e., the aligned and high-density ZnO nanowire (NW) array was first synthesized on the FTO substrate by an aqueous chemical bath deposition (CBD). The ZnO NCs and ZnO NDs were formed using an aqueous CBD at room-temperature and 100 ℃ without any capping agent, respectively. ZnO nanoparticels (NPs) were further bottom-up grown within the interstices of the ZnO NDs using a base-free CBD method to form ZnO ND/NP composite film. HR TEM characterization reveals that the same as the primary ZnO NW, the branch is single crystalline and grows along [0001] as well. Intensity modulated photocurrent spectroscopy (IMPS), indicated the electron transport time in the ZnO ND dye-sensitized solar cell (DSSC) is almost identical to that in the ZnO NW cell. With the thickness of 3.5 μm, a 3.74 % of the solar efficiency has been achieved using the ZnO ND/NP composite film as photoanode, which is superior to that of the TiO2 NP cell. In addition, the efficiency and electron transport properties of the ZnO NW DSSC were significantly enhanced by forming the nanocactus structure through a simple room-temperature CBD.
[1] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao. ZnO nanostructures for dye sensitized solar cells. Adv. Mater. 21, 1-22 (2009)
[2] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides. Science. 291, 1947-1949 (2001)
[3] J. J. Wu, S. C. Liu. Low temperature growth of well aligned ZnO nanorod by chemical vapor deposition. Adv. Mater. 14, 215-218 (2002)
[4] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren. ZnO nanobrides and Nanonails. Nano. Lett. 3, 235-238 (2003)
[5] S. Yamabi, H. Imai. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12, 3773-3778 (2002)
[6] L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solution. Adv. Mater. 15, 464-466 (2003)
[7] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654-3656 (2004)
[8] D.I. Suh, S.Y. Lee, J.H. Hyung, T.H. Kim, S.K. Lee. Multiple ZnO nanowires field effect transistors. J. Phys. Chem. C 112, 1276–1281 (2008)
[9] Z.L. Wang, J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)
[10] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, D. P. Yu. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144-146 (2003)
[11] C.S. Lao, M.C. Park, Q. Kuang, Y.L. Deng, A.K. Sood, D.L. Polla, Z.L. Wang. Giant enhancement in UV response of ZnO nanobelts by polymer surface functionalization, J. Am. Chem. Soc. 129, 12096–12097 (2007)
[12] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon1, R. Noufi. Progress toward 20% efficiency in Cu(In,Ca)Se2 polycrystalline thin film solar cells. Prog. Photovolt: Res. Appl. 7, 311-316 (1999)
[13] L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus, H. W. Schock. ZnO/CdS/CuInSe2 thin film solar cells with improved performance. Appl. Phys. Lett. 62, 597-599 (1993)
[14] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang. Nanowire dye sensitized solar cells. Nat. Mater. 4, 455-450 (2005)
[15] V. Noack, H. Weller, A. Eychmüller. Electron transport in particulate ZnO electrodes: a simple approach. J. Phys. Chem. B. 106, 8514–8523 (2002)
[16] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307–11315 (2003)
[17] P. Wagner, R. Helbig. Hall effect and anisotropy of the mobility of the electrons in zinc oxide. J. Phys. Chem. Sol. 35, 327–335 (1974)
[18] M. A. Green, K. Emery, D. L. King. Solar Cell Efficiency Tables (Version 29). Prog. Photovolt: Res. Appl. 15, 35–40 (2007)
[19] B. O’Regan, M. Grätzel. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737-740 (1991)
[20] P. Guo, M.A. Aegerter. Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process. Thin Solid Films. 351, 290-294 (1999)
[21] J. Liu,T. Luo, S. Mouli T, F. Meng, B. Sun, M. Lia , J. Liu. A novel coral like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye sensitized solar cell application. Chem. Commun., 46, 472–474 (2010)
[22] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng., R. 63, 81-99 (2009).
[23] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida. Role of electrolytes on charge recombination in dye sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple J. Phys. Chem. B 109, 3480-3487 (2005)
[24] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, Shaik M. Zakeeruddin, M. Grätzel. Highly efficient light harvesting ruthenium sensitizer for thin-film dye sensitized solar cells. ACS Nano 3, 3103-3109 (2009)
[25] H. J. Snaith. Estimating the maximum attainable efficiency in dye sensitized solar cells. Adv. Funct. Mater. 20, 13-19 (2010)
[26] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank. Influence of the percolation network geometry on electron transport in dye sensitized titanium dioxide solar cells. J. Phys. Chem. B 107, 7759-7767 (2003)
[27] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye sensitized solar cells. J. Phys. Chem. B 108, 8106-8118 (2004)
[28] J. Nelson, R. E. Chandler. Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 248, 1181–1194 (2004)
[29] T. Yoshida, J. B. Zhang, D. Komatsu, et al. Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19, 17-43 (2009)
[30] T. Yoshida, K. Miyamoto, N. Hibi, T. Sugiura, H. Minoura, D. Schlettwein, T. Oekermann, G. Schneider, D. Wöhrle. Self assembled growth of nano particulate porous ZnO thin film modified by 2,9,16,23-tetrasulfophthalocyanatozinc(II) by one-step electrodeposition. Chem. Lett. 27, 599-600 (1998)
[31] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura. Electrochemical self-assembly of nanoporous ZnO/eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 12, 1214-1217 (2000)
[32] T. Yoshida, T. Oekermann, K. Okabe, D. Schlettwein, K. Funabiki, H. Minoura. Cathodic Electrodeposition of ZnO/eosinY hybrid thin films from dye added zinc nitrate bath and their photoelectrochemical characterizations. Electrochemistry 70, 470-487 (2002)
[33] H. Minoura, T. Yoshida. Electrodeposition of ZnO/dye hybrid thin films for dye-sensitized solar cells. Electrochemistry 76, 109-117 (2008)
[34] C. Y. Jiang, X. W. Sun, G. Q. Lo, and D. L. Kwong, J. X. Wang. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phy. Lett. 90, 263501 (2007)
[35] Y. S. Fu, J. Sun, Y. Xie, J. Liu, H. L. Wang, X. W. Du. ZnO hierarchical nanostructures and application on high efficiency dye sensitized solar cells. Mater. Sci. Eng., B. 166, 196-202 (2010)
[36] X.D. Gao, X.M. Li, S. Zhang, W.D. Yu, J.J. Qiu, J. ZnO submicron structures of controlled morphology synthesized in zinc-hexamethylenetetramine-ethylenediamine aqueous system. Mater. Res. 22, 1815-1823 (2007)
[37] T.L. Sounart, J. Liu, J.A. Voigt, J.W.P. Hau, E.D. Spoerke, Z.R. Tian, Y.B. Jiang. Sequential nucleation and growth of complex nanostructured films. Adv.Funct. Mater. 16, 335-344 (2006)
[38] B. Liu, H. Zeng. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196-4204 (2004)
[39] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, J. Morphological control of ZnO nanostructures by electrodeposition. Phys. Chem. B 109, 13519-13522 (2005)
[40] Y. Tak, K. Yong. Controlled growth of well aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263-19269 (2005)
[41] R.B. Peterson, C.L. Fields, B.A. Gregg. Epitaxial chemical deposition of ZnO nanocolumns from NaOH. Langmuir 20, 5114-5118 (2004)
[42] H. M. Cheng, W. H. Chiu, C. H. Lee, S Y. Tsai, W. F. Hsieh. Formation of branched ZnO nanowires from solvothermal method and dye sensitized solar cells applications. J. Phys. Chem. C 112, 16359–16364 (2008)
[43] C. H. Ku, H. H. Yang, G. R. Chen, J. J. Wu. Wet chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film. Crystal Growth & Design, 8, 283-290 (2008)
[44] E. Hosono, S .Fujihara, T. Kimura, H. Imai. Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J. Colloid Interface Sci. 272, 391 (2004)
[45] H. Morioka, H. Tagaya, M. Karasu, J. I. Kadokawa, K. Chiba. Effects of Zinc on the new preparation method of hydroxy double salts. Inorg. Chem. 38, 4211-4216 (1999)
[46] R. Q. Song, A. W. Xu, B. Deng, Q. Li, G. Y. Chen. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv. Funct. Mater. 17, 296–306 (2007)
[47] F. Xu, M. Dai, Y. Lu, L. Sun. Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye sensitized solar cells. J. Phys. Chem. C 114, 2776–2782 (2010)
[48] F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu. Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater. Des. 30, 1704-1711 (2009)
[49] F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu. Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. J. Phys. Chem. C 113, 1052-1059 (2009)
[50] J. Das, I. R. Evans, D. Khushalani. Zinc Glycolate: A Precursor to ZnO. Inorg. Chem. 48, 3508-3510 (2009)
[51] J. W. Zhang, P. L. Zhu, J. H. Li, J. M. Chen, Z. S. Wu, Z. J. Zhang. Fabrication of octahedral shaped polyol based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single crystal ZnO nanoparticles. Cryst. Growth Des. 9, 2329-2334 (2009)
[52] Q. L. Huang, M. Wang, H. X. Zhong, X. T. Chen, Z. L. Xue, X. Z. You. Netlike nanostructures of Zn(OH)F and ZnO: synthesis, characterization and properties. Cryst. Growth Des. 8, 1412-1417 (2008)
[53] A. J. Bard, L. F. Faulkner. Electrochemical methods-Fundamentals and applications. John Wiley & Sons 368, (2001)
[54] J. Bisquert. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325-333 (2002)
[55] F. F. Santiago, J. Bisquert, G. G. Belmonte, G. Boschloo, A. Hagfeldt. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells. 87, 117–131 (2005)
[56] C. H. Ku, J. J. Wu. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phy. Lett. 91, 093117 (2007)
[57] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda. Determination of parameters of electron transport in dye sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872-13880 (2006)
[58] T. Oekermann, T. Yoshida, H. Minoura, K. G. U. Wijayantha, L. M. Peter. Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/Dye hybrid films. J. Phys. Chem. B 108, 8364-8370 (2004)
[59] G. Franco, L. M. Peter, E. A. Ponomarev. Detection of inhomogeneous dye distribution in dye sensitized nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem. Commun. 1, 61–64 (1999)
[60] T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, B. McKenzie. Secondary nucleation and growth of ZnO. J. AM. CHEM. SOC. 129, 15786-15793 (2007)
[61] Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu. Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430–3435 (2009)
[62] H. J. Snaith, A. Petrozza, S. Ito, H. Miura, M. Grätzel. Charge Generation and Photovoltaic Operation of Solid-State Dye-Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene-Based Sensitizer. Adv. Funct. Mater. 19, 1810–1818 (2009)