| 研究生: |
蔡旻哲 Tsai, Min-Che |
|---|---|
| 論文名稱: |
非線性系統基於非匹配不確定性下之順滑模態觀測器設計 Sliding Mode Observer Design for Nonlinear Systems Subject to Mismatched Uncertainty |
| 指導教授: |
彭兆仲
Peng, Chao-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 強健觀測器 、順滑模態控制 、順滑模態觀測器 、非匹配性不確定性 、線性矩陣不等式 |
| 外文關鍵詞: | Robust Observer, Sliding Mode Control, Sliding Mode Observer, Mismatched Uncertainty, Linear Matrix Inequality |
| 相關次數: | 點閱:290 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多數真實系統普遍為非線性系統,然而在非線性系統下,一般的觀測器設計上較為複雜,因此本論文使用了順滑模態觀測器進行設計。有別於一般的觀測器,順滑模態觀測器在非線性系統下設計較為容易。順滑模態控制理論在順滑模態觀測器上充分地發揮了其優點。基於其許多優異的特性,順滑模態理論早在過去幾十年之間在強健控制領域上吸引了廣泛的關注,順滑模態理論所帶來的這些良好特性是建立在理想順滑模態上,其良好的特性包含:設計準則簡易、易於實現於非線性系統、對於匹配不確定性具有強健性,同時保障閉迴路系統的穩定性。然而,理想順滑模態是藉由一連串不連續的控制律所達成的,此種不連續控制訊號對於控制實現上具有一定難度;相反的,對於順滑模態觀測器來說,卻是得以順利實現的。除了系統模型架構外,為了進一步將數學問題與真實情況結合,本文也考慮了系統本身的不確定性,因此本論文是基於非線性系統存在非匹配不確定性下之順滑模態觀測器設計。對於高階非線性系統,藉由控制系統等效轉換技巧,可以更加容易掌握系統收斂特性。同時,為了提高增益矩陣設計的自由度與彈性,本文在觀測器設計過程中,引入了多目標線性矩陣不等式(Multi-Objective Linear Matrix Inequality, LMI)的數學方法,以達成減少非匹配不確定性對於系統的影響,並降低增益矩陣且維持系統的強健性。本論文最終目標為將所提出之觀測器設計方法應用至多層板金屬加熱系統的溫度估測,包含系統物理模型推導、系統參數鑑別以及觀測器設計,藉由所提出之方法,完成高強健性溫度狀態觀測器設計,並與真實系統的實驗數據進行交叉比對驗證,以確認達到系統即時監控溫度的目的。
This thesis is based on a sliding mode observer (SMO) design for nonlinear systems subjected to mismatched uncertainty. Most real systems are, in general, nonlinear systems but the general observer design is more complicated with the systems. Therefore, this thesis uses a SMO design. Being different from general observers, SMO are easily designed under nonlinear systems. Besides system model structure, for the integration of mathematical problems into real practices, this thesis also takes system uncertainty into consideration. In fact, under the nonlinear systems with uncertainties, the sliding mode control law fully exerts its advantages. With these advantageous characteristics, the sliding mode theory has been paid much attention in the field of robust control for decades.
The proposed excellent characteristics based on the sliding mode theory are due to its ideal mode which occurs out of a series of discontinuous control laws. The characteristics of this SMO includes its simple design criteria, an easy implementation in nonlinear systems, and the robustness to matched uncertainties, and it also guarantees the stability of closed loop systems. For high order nonlinear systems, it is easier to grasp the system convergence characteristics through control system equivalent conversion technique. In the observer design process, the mathematical method of multi-objective linear matrix inequality (LMI) is also used in this paper to reduce the impact of mismatched uncertainty on the system and the gain matrix, and maintain the robustness of the system.
[1] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications. Crc Press, 1998.
[2] W. Perruquetti and J.-P. Barbot, Sliding mode control in engineering. CRC press, 2002.
[3] J. Y. Hung, W. Gao, and J. C. Hung, "Variable structure control: a survey," IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[4] V. Utkin, "Variable structure systems with sliding modes," IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
[5] Y. Jie, W. Qing-Lin, and L. Yuan, "Sliding mode variable structure control theory: A survey," in Proceedings of the 31st Chinese Control Conference, 25-27 July 2012 2012, pp. 3197-3202.
[6] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-mechanical systems. CRC press, 2017.
[7] E. Ranjbar, M. Yaghoubi, and A. A. Suratgar, "Adaptive Sliding Mode Controller Design for a Tunable Capacitor Susceptible to Unknown Upper-Bounded Uncertainties and Disturbance," (in English), Iran. J. Sci. Technol.-Trans. Electr. Eng., Article vol. 44, no. 1, pp. 327-346, Mar 2020, doi: 10.1007/s40998-019-00220-8.
[8] M. Van, M. Mavrovouniotis, and S. S. Ge, "An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators," (in English), IEEE Trans. Syst. Man Cybern. -Syst., Article vol. 49, no. 7, pp. 1448-1458, Jul 2019, doi: 10.1109/tsmc.2017.2782246.
[9] S. H. Ding, K. Q. Mei, and S. H. Li, "A New Second-Order Sliding Mode and Its Application to Nonlinear Constrained Systems," (in English), Ieee Transactions on Automatic Control, Article vol. 64, no. 6, pp. 2545-2552, Jun 2019, doi: 10.1109/tac.2018.2867163.
[10] S. Mobayen, "Design of LMI-based Global Sliding Mode Controller for Uncertain Nonlinear Systems with Application to Genesio's Chaotic System," (in English), Complexity, Article vol. 21, no. 1, pp. 94-98, Sep-Oct 2015, doi: 10.1002/cplx.21545.
[11] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, "Sliding-Mode Robot Control With Exponential Reaching Law," (in English), Ieee Transactions on Industrial Electronics, Article vol. 58, no. 2, pp. 600-610, Feb 2011, doi: 10.1109/tie.2010.2045995.
[12] N. M. H. Norsahperi and K. A. Danapalasingam, "An improved optimal integral sliding mode control for uncertain robotic manipulators with reduced tracking error, chattering, and energy consumption," (in English), Mech. Syst. Signal Proc., Article vol. 142, p. 22, Aug 2020, Art no. 106747, doi: 10.1016/j.ymssp.2020.106747.
[13] J. J. E. Slotine, J. K. Hedrick, and E. A. Misawa, "On Sliding Observers for Nonlinear Systems," Journal of Dynamic Systems, Measurement, and Control, vol. 109, no. 3, pp. 245-252, 1987, doi: 10.1115/1.3143852.
[14] J. T. Moura, H. Elmali, and N. Olgac, "Sliding Mode Control With Sliding Perturbation Observer," Journal of Dynamic Systems, Measurement, and Control, vol. 119, no. 4, pp. 657-665, 1997, doi: 10.1115/1.2802375.
[15] J. Yang, S. H. Li, and X. H. Yu, "Sliding-Mode Control for Systems With Mismatched Uncertainties via a Disturbance Observer," (in English), Ieee Transactions on Industrial Electronics, Article vol. 60, no. 1, pp. 160-169, Jan 2013, doi: 10.1109/tie.2012.2183841.
[16] R. Tudoroiu, N. Ilias, W. Kecs, S. Casavela, M. Dobritoiu, and N. Tudoroiu, "Real-time implementation of DC servomotor actuator with unknown uncertainty using a sliding mode observer," in 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), 11-14 Sept. 2016 2016, pp. 841-848.
[17] C.-C. Peng, "Nonlinear Integral Type Observer Design for State Estimation and Unknown Input Reconstruction," Applied Sciences, vol. 7, p. 67, 01/14 2017, doi: 10.3390/app7010067.
[18] T.-C. Wu, C.-C. Peng, and C.-L. Chen, "An Adaptive Sliding Mode Observer for Nonlinear Systems Subject to Mismatched Uncertainties," IFAC Proceedings Volumes, vol. 45, no. 13, pp. 796-801, 2012/01/01/ 2012, doi: https://doi.org/10.3182/20120620-3-DK-2025.00171.
[19] K. C. Veluvolu and Y. C. Soh, "High-Gain Observers With Sliding Mode for State and Unknown Input Estimations," IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3386-3393, 2009.
[20] J. H. Park, O. M. Kwon, and S. M. Lee, "LMI optimization approach on stability for delayed neural networks of neutral-type," Applied Mathematics and Computation, vol. 196, no. 1, pp. 236-244, 2008/02/15/ 2008, doi: https://doi.org/10.1016/j.amc.2007.05.047.
[21] C.-L. Chen and C.-C. Peng, "Control of a perturbed chaotic system by using a trajectory trapping strategy," Nonlinear Dynamics, vol. 69, no. 4, pp. 2105-2115, 2012, doi: 10.1007/s11071-012-0412-4.
[22] L.-H. Chen and C.-C. Peng, "Extended Backstepping Sliding Controller Design for Chattering Attenuation and Its Application for Servo Motor Control," Applied Sciences, vol. 7, no. 3, 2017, doi: 10.3390/app7030220.
[23] S. He and F. Liu, "Observer-based finite-time control of time-delayed jump systems," Applied Mathematics and Computation, vol. 217, no. 6, pp. 2327-2338, 2010/11/15/ 2010, doi: https://doi.org/10.1016/j.amc.2010.07.031.
[24] C. H. Lien, "Robust observer-based control of systems with state perturbations via LMI approach," (in English), Ieee Transactions on Automatic Control, Article vol. 49, no. 8, pp. 1365-1370, Aug 2004, doi: 10.1109/tac.2004.832660.
[25] C.-H. Lien, "An efficient method to design robust observer-based control of uncertain linear systems," Applied Mathematics and Computation, vol. 158, no. 1, pp. 29-44, 2004/10/25/ 2004, doi: https://doi.org/10.1016/j.amc.2003.08.062.
[26] X. Lin, A. G. Stefanopoulou, H. E. Perez, J. B. Siegel, Y. Li, and R. D. Anderson, "Quadruple adaptive observer of the core temperature in cylindrical Li-ion batteries and their health monitoring," in 2012 American Control Conference (ACC), 27-29 June 2012 2012, pp. 578-583.