| 研究生: |
林昇緯 Lin, Sheng-Wei |
|---|---|
| 論文名稱: |
多脈衝式Nd-YAG雷射輔助金屬粉末/樹脂披覆系統之研究 Study of the metal powder/resin cladding system with the multi-pulse Nd-YAG laser |
| 指導教授: |
林震銘
Lin, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 多脈衝式Nd-YAG雷射 、樹脂 、披覆 |
| 外文關鍵詞: | multi-pulse Nd-YAG laser, resin, cladding |
| 相關次數: | 點閱:82 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為探討多脈衝式Nd-YAG雷射輔助金屬粉末/樹脂披覆系統的效果,以數值模擬與實驗方法進行研究。數值模擬部份使用數值分析軟體FLUENT,在不同的輸送高度與時間下,計算樹脂輸出的情形,進而得到複合層高度的趨勢。在實驗部份先觀察複合層的分佈情形,接著進行單點與連續的脈衝式雷射披覆加工,並量測披覆試件的表面形貌,探討不同的送膠參數對披覆層高度的影響,最後將披覆試件進行微拉伸試驗與金相組織觀察。
實驗與數值模擬結果皆顯示,複合層的高度會隨著送膠參數改變,但須在適當的複合層高度下,才可獲得較高的披覆層高度,而經由多脈衝式雷射加工,可得到連續單點披覆組成的線披覆。由微拉伸實驗結果可發現連續披覆層的強度高於母材,而觀察金相顯微組織得知其結構與雷射燒結現象相似,且點與點之間結合效果良好。
The purpose of this thesis is to characterize the metal powder/resin cladding system with the Nd-YAG laser numerically and experimentally. In the numerical simulation, the FLUENT software was applied to simulate the flow field of the resin output from a feeder nozzle on a substrate with various outlet heights and output times.
In the experiment, the distribution of the metal powder/resin composite layer has been visualized. The multi-pulse cladding was made by the pulsed Nd-YAG laser. Furthermore the cladding specimen was verified by micro tensile test and metallurgical observation.
Both the numerical simulation and experimental results show that an optimum cladding profile could be obtained with proper selection of the composite outlet height. According to the micro tensile test, the strength of the multi-pulse cladding layer is higher than the base material. It can be found the cladding microstructure is similar to that of the conventional laser cladding but with fine bonding structure.
[1]Steen W. M., “Laser material processing”, Springer Verlag, 1998.
[2]Chen S. L., Hsu R. L. “The effects of material composition on the quality of ceramic-metal composite cladding onto Al-alloys with a pulsed Nd-YAG laser”, International Journal Of Advanced Manufacturing Technology, v15, no.7, p461-469, 2003.
[3]Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing”, Wiley, 2009.
[4]Salehi D. S. “Sensing and Control of Nd:YAG Laser Cladding Process”, Applied Surface Science, Swinburne University of Technology, 2005.
[5]Zhang Q. He J. Liu W. Zhong M. “Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding” Surface and Coatings Technology, v162, p140-146, 2003.
[6]Chen Y., Wang H.M. “Microstructure of laser clad TiC/NiAl–Ni3(Al,Ti,C) wear-resistant intermetallic matrix composite coatings”, Materials Letters, v57,p2029-2036, 2003.
[7]Yang S., Chena N., Liu W., Zhong M., Wang Z., Kokawa H. “Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding”, Surface and Coatings Technology, v 183, p 254-260, 2004.
[8]Chiu K. Y., Cheng F. T., Man H. C. “Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion”, Materials Science and Engineering, v402, p126-134, 2005.
[9]Man H. C., Zhang S., Cheng F. T., Guo X. “In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding”, Surface & Coatings Technology,v200, p4961-4966, 2006.
[10]Yao J., Sun G. P., Lin W. G., Liu C. and Mao G. L., “Characterisation and formation of boundary in laser cladding AZ91D with Al+Al2O3”, Materials Science and Technology, v 23, no4, 2007.
[11]Li M., Chao M., Liang E., Yu J., Zhang J., Li D., “Improving wear resistance of pure copper by laser surface modification”, Applied Surface Science, v 258, p 1599-1604, 2011.
[12]Liu Y. H., Guo Z. X., Yang Y., Wang H. Y., Hu J. D., Li Y. X., Chumakov A.N., Bosak N.A., “Laser (a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al2O3 powders”, Applied Surface Science, v253,p1722-1728, 2006.
[13]Yang Y., Hu J. D., Wang S. Y., Liu S. Y., Li Y. X., Guo Z. X. “Laser (Nd:YAG) Cladding of AZ91D Magnesium Alloys with Al+Ti+C Nanopowders”Laser in Engineering, v16, p9-17, 2006.
[14]Yang Y., Wu H. “Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders”, Materials Letters, v52,p19-21, 2009.
[15]Cai L. F., Mark C. K. Zhou W. “Laser cladding of magnesium alloy AZ91D with silicon carbide”, Surface Review and Letters, v16 , no2, p215-221, 2009.
[16]Samant A. N., Du B., Paital S. R. , Kumar S., Dahotre N. B. “Pulsed laser surface treatment of magnesium alloy: Correlation between thermal model and experimental observations”, Journal of Materials Processing Technology, v209,p5060-5067, 2009.
[17]Yan H., Wang A., Xu K., Wang W., Huang Z. “Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding”, Journal of Alloys and Compounds, v505,p645-663, 2010.
[18]Yang Y. Zhang D., Yan W., Zheng Y. “Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding”, Optics and Lasers in Engineering, v48, p119-124, 2010
[19]鄭凱宇, 雷射披覆/燒結合成法之表面張力與孔隙現象研究, 國立成功大學機械工程研究所碩士論文,2009.
[20]Li Y., Ma J. “Study on overlapping in the laser cladding process” Surface and Coatings Technology, v90, p1-5, 1997.
[21]Schneider M. F. ,”Laser cladding with powder, effect of some machining parameters on clad properties”, Ph.D. Thesis University of Twente, Enschede, 1998.
[22]Cheng F. T., Lo K. H., Man H. C. “A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire” Materials Science and Engineering, v380, p20-29, 2004.
[23]White F. M., Fluid mechanics,2nd ed., McGraw-Hill,1986.
[24]謝曉星, 基本流體力學, 台灣東華書局股份有限公司,1991.
[25]FLUENT 5 User Guide, Fluent Inc,1998.
[26]洪健富, 雷射送線披覆之厚度研究, 國立成功大學機械工程研究所碩士論文, 2001.
[27]朱紅鈞, 林元華, 謝龍漢, FLUENT 流體分析及仿真實用教程, 人民郵電出版社, 2010.
[28]顧宜, 複合材料, 新文京開發出版股份有限公司, 2002.
[29]陳韋伶, 表面鍍銅改良碳纖維/環氧樹脂熱傳導性質之研究, 國立成功大學材料科學及工程學系碩博士論文, 2003
[30]葉清松, 王鴻烈, 流體力學概論, 高立圖書有限公司, 1997.
[31]嚴嘉蕙, 物理化學實驗, 新文京開發出版股份有限公司, 2006.
[32]陶雨台編譯, 表面物理化學, 千華圖書出版事業有限公司, 1988.
[33]Munson B. R., Young D. F., Okiishi T.H. “Fundamentals of Fluid Mechanics”, 4th ed, 2001.
[34]F LUENT 6.3 User's Guide, Fluent Inc. 2006.
[35]Tavana H., Simon F., Grundke K., Kwok D.Y., Hair M.L., Neumann A.W. “Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension” Journal of Colloid and Interface Science, v291, p497-506, 2005.
[36]Radiom M., Yang C., Chan W. K., “Characterization of surface tension and contact angle of nanofluids”, Proceedings of SPIE -The International Society for Optical Engineering, v 7522, 2010.
[37]He X., Fuerschbach P. W., DebRoy T., “Heat transfer and fluid flow during laser spot welding of 304 stainless steel” Journal of Physics D: Applied Physics, v36, p1388-1398,2003.
[38]Lippold J. C., Kotecki D. C. “Welding metallurgy and weldability of stainless steels”, Wiley-Interscience, 2005.
[39]Dillon C. P., “Corrosion resistance of stainless steels”, M. Dekker, 1995
[40]Lawrence J., Pou J., Low D. K. Y., Toyserkani E., “Advances in laser materials processing”, Woodhead Publishing Ltd, 2010.