簡易檢索 / 詳目顯示

研究生: 蕭強
Hsiao, Chiang
論文名稱: 以溶熱法合成之球形單晶製備高透光Nd:YAG多晶陶瓷
Fabrication of Nd:YAG transparent polycrystalline ceramics using solvothermal-derived spherical single crystals
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 釔鋁石榴石溶熱法注漿成形多晶陶瓷
外文關鍵詞: YAG, Neodymium, Solvothermal, Slip casting, Polycrystalline ceramics
相關次數: 點閱:126下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨在開發快速製備Nd:YAG多晶陶瓷製程,分別使用溶熱法與共沉法合成之Nd:YAG粉末樣品,以單軸加壓成形與初步燒結進行粉末性質比較,探討粉末粒徑與凝聚性對於胚體成形之影響。再將適當粉末以注漿成形法製備生胚樣品,並於漿料製備過程中改變震盪分散時間、分散劑添加量以及漿料固含量等參數,探討其漿料與生胚性質之影響。研究結果顯示,溶熱法合成之粉末具有良好的分散性質,不需冗長的球磨處理,即使是高濃度的漿料,僅以細胞粉碎機之震盪方式即可達到理想的分散狀態,大幅減少漿料製備過程所需的時間,提升整體製程的效率。在固含量參數為50 - 60 wt.%,分散劑添加量為2 wt.%的條件下震盪360秒,即可得到流動性佳且分散良好之漿料,經注漿後生胚密度皆約為60 %,最後以1800°C高溫燒結2小時可得到相對理論密度為99.5 %之高密度多晶陶瓷,其全光線穿透率可達70 %。

    A fabrication of Nd:YAG transparent polycrystalline ceramics was reported in this work. Solvothermal derived Nd:YAG powders were used as starting material which were mono- dispersed and spherical single crystals. Highly concentrated slurry for the following slip casting forming was readily formed by a simply sonication treatment without the need of ball milling. To enhance the slurry stability, the parameters of slurry were also investigated. The optimal parameters of the slurry were 50-60 wt. % of solid loading, 2 wt. % of PAA-NH4 as dispersant and treated with an ultrasonic homogenizer for 360 seconds. The green body fabricated using slip casting method was about 60 %. A preheating treatment at 150°C for 1 h was applied to the green body in order to remove the residues. After a sintering at 1800°C for 2 h under N2 atmosphere, dense Nd:YAG polycrystalline ceramics with sintered density of 99.5 % was obtained. .The real in-line transmittance of ceramics was about 30 %.

    中文摘要 I Abstract II 致謝 XV 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 理論基礎與文獻整理 3 2.1 YAG簡介 3 2.1.1 YAG晶體結構 3 2.2 YAG合成方法 5 2.2.1 固態反應法 7 2.2.2 濕式化學合成法 8 2.3 顆粒間的作用力 12 2.3.1 凡德瓦爾作用力 12 2.3.2 靜電作用力 14 2.3.3 DLVO理論 15 2.3.4 空間位阻作用力 16 2.4 YAG多晶陶瓷製備 17 2.4.1粉末前處理 18 2.4.2生胚成形方法 19 2.4.3多晶陶瓷燒結 22 第三章 實驗方法及步驟 26 3.1 實驗藥品 26 3.2 實驗步驟 27 3.2.1 Nd:YAG粉末合成 27 3.2.2 生胚成形 30 3.2.3 燒結 31 3.3 性質分析 32 3.3.1 X - ray粉末繞射分析 32 3.3.2 掃描式電子顯微鏡觀察 33 3.3.3 雷射粒徑分析與表面電位分析 33 3.3.4 阿基米德密度量測 33 3.3.5 光穿透率分析 34 3.3.6 螢光性質分析 34 第四章 結果與討論 35 4.1 ND:YAG粉末合成 35 4.1.1 溶熱法 35 4.1.2 共沉澱法 38 4.2 單軸加壓成形 41 4.2.1 溶熱粉末預處裡 41 4.2.2 粉末性質與生胚壓實性 42 4.2.3 粉末性質與燒結性 44 4.3 高濃度漿料製備與配方調整 47 4.3.1 震盪分散處理 47 4.3.2 分散劑添加量 49 4.3.3 漿料固含量 52 4.3.4 共沉法粉末之注漿成形 55 4.4 多晶陶瓷燒結性探討 56 4.4.1 乾壓成形生胚之高溫燒結性 57 4.4.2 注漿成形生胚之燒結性 58 4.4.3 光穿透率與螢光性質分析 64 第五章 結論 69 參考文獻 70

    [1] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc., 78, 1033-1040 (1995).
    [2] X. Qin, H. Yang, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, “Synthesis of submicron-sized spherical Y2O3 powder for transparent YAG ceramics,” Mater. Res. Bull., 46, 170-174 (2011).
    [3] P. Ramanujama, B. Vaidhyanathana, J. Binnera, A. Anshumana, C. Spacieb, “A comparative study of the synthesis of nanocrystalline Yttrium Aluminium Garnet using sol-gel and co-precipitation methods,” Ceram. Inter., 40, 4179-4186 (2014).
    [4] V. Lojpur, A. Egelja, J. Pantić, V. Đorđević, B. Matović, M. D. Dramićanin, “Y3Al5O12:Re3+ (Re=Ce, Eu, and Sm) nanocrystalline powders prepared by modified glycine combustion method,” Sci. Sinter., 46, 75-82 (2014).
    [5] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders:the effect of precipitant,” J. Euro. Ceram. Soc., 20, 2395-2405 (2000).
    [6] L. Wang, H. Kou, Y. Zeng, J. Li, Y. Pan, J Guo, “Preparation of YAG powders and ceramics through mixed precipitation method,” Ceram. Inter., 38, 4401-4405 (2012).
    [7] N. Jia, X. Zhang, W. He, W. Hu, X. Meng, Y. Du, J. Jiang, Y. Du, “Property of YAG:Ce phosphors powder prepared by mixed solvothermal method,” J. Alloy. Compd., 509, 1848-1853 (2011).
    [8] A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, R. Mahiou, “Rapid synthesis of Ce3+ -doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors,” New J. Chem., 36, 2493-2500 (2012).
    [9] W.T. Lin, Y.C. Wu, “One-pot synthesis of submicrometer-sized Ce:YAG spherical particles by solvothermal process using alcohol solvents,” J. Am. Ceram. Soc., 98, 2754-2759 (2015).
    [10] R. L. Coble, “Sintering crystalline solids. I. intermediate and final state diffusion models,” J. App. Phys., 32, 787-792 (1961).
    [11] G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater., 34, 499-512 (2012).
    [12] J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Phys., 4, 182 (1964).
    [13] B. Cockayne, M. Chesswas, D. B. Gasson, “Facetting and optical perfection in Czochralski grown garnets and ruby,” J. Mater. Sci., 4, 450-456 (1969).
    [14] A. Ikesue1, Y. L. Aung, “Ceramic laser materials,” Nature Publishing Group, 2, 721-727 (2008).
    [15] M. Suárez, A. Fernández, R. Torrecillas, J. L. Menéndez, “Chapter 23: Sintering to transparency of polycrystalline ceramic material,” Sintering of Ceramics-New Emerging Techniques, A. Lakshmanan (Ed.), (2012).
    [16] B. Wang, Q. X. Cao, G. Xu, S. Tian, “Sintering process of Nd:YAG transparent ceramic,” App. Mech. Mater., 281, 475-479 (2013).
    [17] J. Zhoua, W. Zhanga, L. Wanga, Y. Shena, J. Lia, W. Liua, B. Jianga, H. Koua, Y. Shia, Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Inter., 37, 119-125 (2011).
    [18] L. Qiang, L. Jing, L. Jiang, I. Maxim, M. Anatoliy, Y. Zeng, G. Jin, X. Ba, W. Liu, B. Jiang, Y. Pan, J. Guo, “Solid-state reactive sintering of YAG transparent ceramics for optical applications,” J. Alloy. Compd., 616, 81-88 (2014).
    [19] L. Wen, X. Sun, Z. Xiu, S. Chen, C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Euro. Ceram. Soc., 24, 2681-2688 (2004).
    [20] H. S. Yoder, M. L. Keith, “Complete substitution of aluminum for silicon: the system 3MnO•Al2O3•3SiO2-3Y2O3•5Al2O3,” Am. Mineral., 36, 519-533 (1951).
    [21] L. Dobrzycki, E. Bulska, D.A. Pawlak, Z.Frukacz, K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
    [22] D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103, 1454-1461 (1999).
    [23] Y. N. Xu, W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys. Rev., B 59, 10530-10535 (1999).
    [24] T. Hahn, International tables for crystallography, volume A, space-group symmetry, 22n revised Ed., D. Reidel Publishers, Holland, (1987).
    [25] 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國90年。
    [26] O. Fabrichnaya, H. J. Seifert, T. Ludwig, F. Aldinger, A. Navrotsky, “The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system,” Scand. J. Metall., 30, 175-183 (2001).
    [27] 李孟蓉,離子的移動力對YAG相轉換之影響以及hexagonal-YAP、YAG生成機制探討,國立成功大學資源工程學系碩士論文,民國99年。
    [28] J. Liu, L. Lin, J. Li, J. Liu, Y. Yuan, M. Ivanov, M. Chen, B. Liu, L. Ge, T. Xie, H. Kou, Y. Shi, Y. Pan, J. Guo, “Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics, ” Ceram. Inter., 40, 9841-9851 (2014).
    [29] X. Ba1, J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, J. Liu, “Influences of solid loadings on the microstructures and the optical properties of Yb:YAG ceramics, ” Inter. J. App, Ceram. Tech., 12, 418-425 (2015).
    [30] A. Y. Neiman, E. V. Tkachenko, L. A. Kvichko, L. A. Kotok, “Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russ. J. Inorg. Chem., 25, 2340-2345 (1980).
    [31] V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Y. P. Udalov, L. P. Kachalova, “Interaction of yttrium and aluminum oxide,” Inorg. Mater., 19, 95-99 (1983).
    [32] G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, “Solution combustion synthesis, structure and luminescence of Y3Al5O12:Tb3+ phosphors,” J. Alloy. Compd., 421, 294-297 (2006).
    [33] Y. H. Zhou, J. Lin, M. Yu, S.M. Han, S.B. Wang, H.J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull., 38, 1289-1299 (2003).
    [34] X. Li, B. Zheng, T. O. Wubah, J. Huang, “Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics,” Ceram. Inter., 39, 7983-7988 (2013).
    [35] J. Li, X. Sun, S. Liu, X. Li, J. G. Li, D. Huo, “A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics,” Ceram. Inter., 41, 3283-3287 (2015).
    [36] P. Palmero, R. Traverso, “Co-precipitation of YAG powders for transparent materials: effect of the synthesis parameters on processing and microstructure,” Mater., 7, 7145-7156 (2014).
    [37] G. W. Morey, “Hydrothermal synthesis,” J. Am. Ceram. Soc., 36, 279-285 (1953).
    [38] R. A. Laudise, “Hydrothermal synthesis of crystals,” J. Chem. Eng. New., 9, 30-43 (1987).
    [39] V. K. Lamer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc. 72, 4847-4854 (1950).
    [40] K. Iwata, Y. M. Sun, S. Suda, ”A recovery of carbon oxides by methanation reaction through a pressure-temperature swing process by applying active protium in the fluorinated metal hydride,” Intl. J. Hydro. Energy, 24, 251-256 (1999).
    [41] G. Cao, Y. Wang, “Nanostructures and Nanomaterials: Synthesis, Properties, and Applications”, Imperial College Press, London, (2004).
    [42] M. Dekker, Principles of Colloid and Surface Chemistry, 2nd Ed. New York, (1986).
    [43] L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci., 70, 125-169 (1997).
    [44] M. J. Rosen, Surfactants and interfacial phenomena, 2nd Ed, Wiley, New York, (1988).
    [45] R. M. Pashley, M. E. Karaman, “Applied Colloid and Surface Chemistry, Wiley, Canberra, (2004).
    [46] J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83, 2341-2359 (2000).
    [47] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed, Academic Press, London, (1992).
    [48] M. N. Rahaman, Ceramic Processing, CRC Press, (2006).
    [49] Y. Huang, D. Jiang, J. Zhang , Q. Lin, Z. Huang, “Sintering of transparent Nd:YAG ceramics in oxygen atmosphere,” J. Rare Earth., 31, 153-157 (2013).
    [50] J. Wang, J. Zhang, D. Luo, H. Yang, D. Tang, L. B. Kong, “Densification and microstructural evolution of yttria transparent ceramics: the effect of ball milling conditions, ” J. Euro. Ceram. Soc., 35, 1011-1019 (2015).
    [51] X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloy. Compd., 589, 448-454 (2014).
    [52] J. Li, J. Liu, B. Liu, W. Liu, Y. Zeng, X. Ba, T. Xie, B. Jiang, Q. Liu, Y. Pan, X. Feng, J. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Euro. Ceram. Soc., 34, 2497-2507 (2014).
    [53] L. Zhang, Y. Li, X. Li, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, “Characterization of spray granulated Nd:YAG particles for transparent ceramics,” J. Alloy. Compd., 639, 244-251 (2015).
    [54] J. Li, X. Su, S. Liu, X. Li , D. Huo, J. G. Li, Q. Zhu, M. Zhang, Y. Sang, H. Liu “A novel stearate melting method for synthesizing highly reactive YAG nanopowders,” J. Alloy. Compd., 585, 48-53 (2014).
    [55] W. Liu, B. Jiang, W. Zhang, J. Li, J. Zhou, D. Zhang, Y. Pan, J. Guo, “Influence of heating rate on optical properties of Nd:YAG laser ceramic,” Ceram. Inter., 36, 2197-2201 (2010).
    [56] J. Mouzon, E. Glowacki, M. Odén, “Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics,” J. Mater. Sci., 43, 2849-2856 (2008).
    [57] H. H. D. Lee, “Influence of slip-casting and dry-pressing on structure evolution of alumina compacts,” J. Mater Sci., 27, 6673-6678 (1992).
    [58] R. Pandu, B. Papiya, R. Kotikalapudi, B. S. Madireddy, J. Roy, P. Gadhe, S. K. Chandrashekhar, K. C. Tapas Kumar, M. G. Nitin, “Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics,” Ceram. Inter., 40, 5575-5581 (2014).
    [59] Yu. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, A. A. Kaminskii, “Development of Nd3+:Y3Al5O12 laser ceramics by high-pressure colloidal slip-casting (HPCSC) method,” Opt. Mater., 31, 707-710 (2009).
    [60] S. Deville, “Freeze-casting of porous ceramics: a review of current achievements and issues,” Adv. Eng. Mater., 10, 155-169 (2008).
    [61] K. A. Appiagyei, G. L. Messing, J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) Influence of ball milling speed on microstructure and optical transparency of Nd YAG ceramics ceramics,” Ceram. Intl., 34, 1309-1313 (2008).
    [62] Y. Lv, W. Zhang, J. Tan, Y. Sang, H. Qin, J. Hu, L. Tong, H. Liu, J. Wang, R. I. Boughton, “Dispersion of concentrated aqueous neodymia–yttria–alumina mixture with ammonium poly(acrylic acid) as dispersant,” J. Alloy. Compd., 509, 3122-3127 (2011).
    [63] S. Mei, J. Yang, J. M. F. Ferreira, “Comparison of dispersants performance in slip casting of cordierite-based glass-ceramics,” Ceram. Inter., 29, 785-791 (2003).
    [64] K.S. Chou, L. J. Lee, “Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry,” J. Am. Ceram. Soc., 72, 1622-1627 (1989).
    [65] J. Zhou, Y.B. Pan, J. Li, W.X. Zhang, H.M. Kou, W. B. Liu, J. K. Guo, “Fabrication of YAG transparent ceramics using slip casting with ethanol,” J. Inorg. Mater., 26, 254-256 (2011).
    [66] X. Yu, P. Somasundaran, “Role of polymer conformation in interparticle-bridging dominated flocculation,” J. Colloid Interface Sci., 177, 283–287, (1996).
    [67] X. Li, Q. Li, “YAG ceramic processed by slip casting via aqueous slurries,” Ceram. Inter., 34, 397-401 (2008).
    [68] X. Ji, J. Deng, B. Kang, H. Huang , X. Wang, W. Jing, T. Xu, “Fabrication of transparent neodymium-doped yttrium aluminum garnet ceramics by high solid loading suspensions,” Ceram. Inter., 39, 7921-7926 (2013).
    [69] Y. H. Lv, H. Liu, Y. H. Sang, S. J. Liu, T. Chen, H. M. Qin, J. Y. Wang, “Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant,” J. Mater Sci., 45, 706-712 (2010).
    [70] James S. Reed, “Principles of Ceramics Processing”, 2nd Ed, Wiley Interscience, New Yok, (1995).
    [71] R. Pampuch, “Ceramic materials: an introduction to their Properties,” Els. Sci. Pub. Com., 130-136 (1976).
    [72] Mohamed N. Rahaman, “Sintering of Ceramics”, CRC Press, New York (2003).
    [73] B. Ma, T. Lu, W. Zhang, N. Wei, Z. Lu, X. Chen, Y. Shi, “Microstructural sintering evolution and sintering parameters optimization of the silica-doped Nd:YAG ceramics using the co-precipitated raw powder,” J. Euro. Ceram., 35, 2403-2412 (2015).
    [74] W. Liu, B. Jiang, W. Zhang, J. Li, J. Zhou, D. Zhang, Y. Pan, J. Guo, “Influence of heating rate on optical properties of Nd:YAG laser ceramic,” Ceram. Intl., 36, 2197-2201 (2010).
    [75] Z. H. Chen, J.T. Li, J.J. Xu, Z.G. Hu, “Fabrication of YAG transparent ceramics by two-step sintering,” Ceram. Inter., 34, 1709-1712 (2008).
    [76] W. Zhu, Q. Chen, G. Feng, W. Wu, D. Xiao, J. Zhu, “Optical properties of the polycrystalline transparent Nd:YAG ceramics prepared by two-step sintering,” Ceram. Inter., 38, 649-652 (2012).
    [77] W. Zhang, T. Lu, B. Ma, N. Wei, Z. Lu, F. Li, Y. Guan, X. Chen, W. Liu, L. Qi, “Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing,” Opt. Mater., 35, 2405-2410 (2013).
    [78] M. Sokol, S. Kalabukhov, V. Kasiyan, A. Rothman, M. P. Dariel, N. Frage, “Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG,” Opt. Mater., 38, 204-210 (2014).
    [79] N. L. Lin, “Solvent guide,” 2nd Ed., Chemical Industry Publication, Beijing, (1994).
    [80] J. Qin, R. Yang, G. Liu, M. Lia, Y. Shi “Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process,” Mater. Res. Bull., 45 1426 (2010).
    [81] C. Herring, “Effect of chanbe of Scale on Sintering phenomena”, J. Appl. Phys. 21, 301 (1950).
    [82] 林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為,國立成功大學資源工程研究所碩士論文,民國98年.
    [83] E. A. Barringer, H. K. Bowen, “Effects of particle packing on the sintered microstructure,” App. Phy. A, 45, 271-275 (1988).
    [84] D. W. Ni, V. Esposito, S. P. V. Foghmoes, S. Ramousse, “Densification and grain growth kinetics of Ce0.9Gd0.1O1.95 in tape cast layers: The influence of porosity,” J. Euro. Ceram. Soc., 34, 2371-2379 (2014).
    [85] Q. Lou, J. Zhou, Y. Qi, H. Cai, “Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications,” C. Sikalidis (Ed.), InTech Publishers, Croatia, (2011).

    下載圖示 校內:2017-02-16公開
    校外:2017-02-16公開
    QR CODE