| 研究生: |
蕭強 Hsiao, Chiang |
|---|---|
| 論文名稱: |
以溶熱法合成之球形單晶製備高透光Nd:YAG多晶陶瓷 Fabrication of Nd:YAG transparent polycrystalline ceramics using solvothermal-derived spherical single crystals |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 釔鋁石榴石 、釹 、溶熱法 、注漿成形 、多晶陶瓷 |
| 外文關鍵詞: | YAG, Neodymium, Solvothermal, Slip casting, Polycrystalline ceramics |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主旨在開發快速製備Nd:YAG多晶陶瓷製程,分別使用溶熱法與共沉法合成之Nd:YAG粉末樣品,以單軸加壓成形與初步燒結進行粉末性質比較,探討粉末粒徑與凝聚性對於胚體成形之影響。再將適當粉末以注漿成形法製備生胚樣品,並於漿料製備過程中改變震盪分散時間、分散劑添加量以及漿料固含量等參數,探討其漿料與生胚性質之影響。研究結果顯示,溶熱法合成之粉末具有良好的分散性質,不需冗長的球磨處理,即使是高濃度的漿料,僅以細胞粉碎機之震盪方式即可達到理想的分散狀態,大幅減少漿料製備過程所需的時間,提升整體製程的效率。在固含量參數為50 - 60 wt.%,分散劑添加量為2 wt.%的條件下震盪360秒,即可得到流動性佳且分散良好之漿料,經注漿後生胚密度皆約為60 %,最後以1800°C高溫燒結2小時可得到相對理論密度為99.5 %之高密度多晶陶瓷,其全光線穿透率可達70 %。
A fabrication of Nd:YAG transparent polycrystalline ceramics was reported in this work. Solvothermal derived Nd:YAG powders were used as starting material which were mono- dispersed and spherical single crystals. Highly concentrated slurry for the following slip casting forming was readily formed by a simply sonication treatment without the need of ball milling. To enhance the slurry stability, the parameters of slurry were also investigated. The optimal parameters of the slurry were 50-60 wt. % of solid loading, 2 wt. % of PAA-NH4 as dispersant and treated with an ultrasonic homogenizer for 360 seconds. The green body fabricated using slip casting method was about 60 %. A preheating treatment at 150°C for 1 h was applied to the green body in order to remove the residues. After a sintering at 1800°C for 2 h under N2 atmosphere, dense Nd:YAG polycrystalline ceramics with sintered density of 99.5 % was obtained. .The real in-line transmittance of ceramics was about 30 %.
[1] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc., 78, 1033-1040 (1995).
[2] X. Qin, H. Yang, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, “Synthesis of submicron-sized spherical Y2O3 powder for transparent YAG ceramics,” Mater. Res. Bull., 46, 170-174 (2011).
[3] P. Ramanujama, B. Vaidhyanathana, J. Binnera, A. Anshumana, C. Spacieb, “A comparative study of the synthesis of nanocrystalline Yttrium Aluminium Garnet using sol-gel and co-precipitation methods,” Ceram. Inter., 40, 4179-4186 (2014).
[4] V. Lojpur, A. Egelja, J. Pantić, V. Đorđević, B. Matović, M. D. Dramićanin, “Y3Al5O12:Re3+ (Re=Ce, Eu, and Sm) nanocrystalline powders prepared by modified glycine combustion method,” Sci. Sinter., 46, 75-82 (2014).
[5] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders:the effect of precipitant,” J. Euro. Ceram. Soc., 20, 2395-2405 (2000).
[6] L. Wang, H. Kou, Y. Zeng, J. Li, Y. Pan, J Guo, “Preparation of YAG powders and ceramics through mixed precipitation method,” Ceram. Inter., 38, 4401-4405 (2012).
[7] N. Jia, X. Zhang, W. He, W. Hu, X. Meng, Y. Du, J. Jiang, Y. Du, “Property of YAG:Ce phosphors powder prepared by mixed solvothermal method,” J. Alloy. Compd., 509, 1848-1853 (2011).
[8] A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, R. Mahiou, “Rapid synthesis of Ce3+ -doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors,” New J. Chem., 36, 2493-2500 (2012).
[9] W.T. Lin, Y.C. Wu, “One-pot synthesis of submicrometer-sized Ce:YAG spherical particles by solvothermal process using alcohol solvents,” J. Am. Ceram. Soc., 98, 2754-2759 (2015).
[10] R. L. Coble, “Sintering crystalline solids. I. intermediate and final state diffusion models,” J. App. Phys., 32, 787-792 (1961).
[11] G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater., 34, 499-512 (2012).
[12] J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Phys., 4, 182 (1964).
[13] B. Cockayne, M. Chesswas, D. B. Gasson, “Facetting and optical perfection in Czochralski grown garnets and ruby,” J. Mater. Sci., 4, 450-456 (1969).
[14] A. Ikesue1, Y. L. Aung, “Ceramic laser materials,” Nature Publishing Group, 2, 721-727 (2008).
[15] M. Suárez, A. Fernández, R. Torrecillas, J. L. Menéndez, “Chapter 23: Sintering to transparency of polycrystalline ceramic material,” Sintering of Ceramics-New Emerging Techniques, A. Lakshmanan (Ed.), (2012).
[16] B. Wang, Q. X. Cao, G. Xu, S. Tian, “Sintering process of Nd:YAG transparent ceramic,” App. Mech. Mater., 281, 475-479 (2013).
[17] J. Zhoua, W. Zhanga, L. Wanga, Y. Shena, J. Lia, W. Liua, B. Jianga, H. Koua, Y. Shia, Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Inter., 37, 119-125 (2011).
[18] L. Qiang, L. Jing, L. Jiang, I. Maxim, M. Anatoliy, Y. Zeng, G. Jin, X. Ba, W. Liu, B. Jiang, Y. Pan, J. Guo, “Solid-state reactive sintering of YAG transparent ceramics for optical applications,” J. Alloy. Compd., 616, 81-88 (2014).
[19] L. Wen, X. Sun, Z. Xiu, S. Chen, C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Euro. Ceram. Soc., 24, 2681-2688 (2004).
[20] H. S. Yoder, M. L. Keith, “Complete substitution of aluminum for silicon: the system 3MnO•Al2O3•3SiO2-3Y2O3•5Al2O3,” Am. Mineral., 36, 519-533 (1951).
[21] L. Dobrzycki, E. Bulska, D.A. Pawlak, Z.Frukacz, K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
[22] D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103, 1454-1461 (1999).
[23] Y. N. Xu, W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys. Rev., B 59, 10530-10535 (1999).
[24] T. Hahn, International tables for crystallography, volume A, space-group symmetry, 22n revised Ed., D. Reidel Publishers, Holland, (1987).
[25] 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國90年。
[26] O. Fabrichnaya, H. J. Seifert, T. Ludwig, F. Aldinger, A. Navrotsky, “The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system,” Scand. J. Metall., 30, 175-183 (2001).
[27] 李孟蓉,離子的移動力對YAG相轉換之影響以及hexagonal-YAP、YAG生成機制探討,國立成功大學資源工程學系碩士論文,民國99年。
[28] J. Liu, L. Lin, J. Li, J. Liu, Y. Yuan, M. Ivanov, M. Chen, B. Liu, L. Ge, T. Xie, H. Kou, Y. Shi, Y. Pan, J. Guo, “Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics, ” Ceram. Inter., 40, 9841-9851 (2014).
[29] X. Ba1, J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, J. Liu, “Influences of solid loadings on the microstructures and the optical properties of Yb:YAG ceramics, ” Inter. J. App, Ceram. Tech., 12, 418-425 (2015).
[30] A. Y. Neiman, E. V. Tkachenko, L. A. Kvichko, L. A. Kotok, “Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russ. J. Inorg. Chem., 25, 2340-2345 (1980).
[31] V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Y. P. Udalov, L. P. Kachalova, “Interaction of yttrium and aluminum oxide,” Inorg. Mater., 19, 95-99 (1983).
[32] G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, “Solution combustion synthesis, structure and luminescence of Y3Al5O12:Tb3+ phosphors,” J. Alloy. Compd., 421, 294-297 (2006).
[33] Y. H. Zhou, J. Lin, M. Yu, S.M. Han, S.B. Wang, H.J. Zhang, “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis,” Mater. Res. Bull., 38, 1289-1299 (2003).
[34] X. Li, B. Zheng, T. O. Wubah, J. Huang, “Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics,” Ceram. Inter., 39, 7983-7988 (2013).
[35] J. Li, X. Sun, S. Liu, X. Li, J. G. Li, D. Huo, “A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics,” Ceram. Inter., 41, 3283-3287 (2015).
[36] P. Palmero, R. Traverso, “Co-precipitation of YAG powders for transparent materials: effect of the synthesis parameters on processing and microstructure,” Mater., 7, 7145-7156 (2014).
[37] G. W. Morey, “Hydrothermal synthesis,” J. Am. Ceram. Soc., 36, 279-285 (1953).
[38] R. A. Laudise, “Hydrothermal synthesis of crystals,” J. Chem. Eng. New., 9, 30-43 (1987).
[39] V. K. Lamer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc. 72, 4847-4854 (1950).
[40] K. Iwata, Y. M. Sun, S. Suda, ”A recovery of carbon oxides by methanation reaction through a pressure-temperature swing process by applying active protium in the fluorinated metal hydride,” Intl. J. Hydro. Energy, 24, 251-256 (1999).
[41] G. Cao, Y. Wang, “Nanostructures and Nanomaterials: Synthesis, Properties, and Applications”, Imperial College Press, London, (2004).
[42] M. Dekker, Principles of Colloid and Surface Chemistry, 2nd Ed. New York, (1986).
[43] L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci., 70, 125-169 (1997).
[44] M. J. Rosen, Surfactants and interfacial phenomena, 2nd Ed, Wiley, New York, (1988).
[45] R. M. Pashley, M. E. Karaman, “Applied Colloid and Surface Chemistry, Wiley, Canberra, (2004).
[46] J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83, 2341-2359 (2000).
[47] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed, Academic Press, London, (1992).
[48] M. N. Rahaman, Ceramic Processing, CRC Press, (2006).
[49] Y. Huang, D. Jiang, J. Zhang , Q. Lin, Z. Huang, “Sintering of transparent Nd:YAG ceramics in oxygen atmosphere,” J. Rare Earth., 31, 153-157 (2013).
[50] J. Wang, J. Zhang, D. Luo, H. Yang, D. Tang, L. B. Kong, “Densification and microstructural evolution of yttria transparent ceramics: the effect of ball milling conditions, ” J. Euro. Ceram. Soc., 35, 1011-1019 (2015).
[51] X. Chen, T. Lu, N. Wei, Z. Lu, W. Zhang, B. Ma, “Effect of ball-milling granulation with PVB adhesive on the sinterability of co-precipitated Yb:YAG nanopowders,” J. Alloy. Compd., 589, 448-454 (2014).
[52] J. Li, J. Liu, B. Liu, W. Liu, Y. Zeng, X. Ba, T. Xie, B. Jiang, Q. Liu, Y. Pan, X. Feng, J. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Euro. Ceram. Soc., 34, 2497-2507 (2014).
[53] L. Zhang, Y. Li, X. Li, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, “Characterization of spray granulated Nd:YAG particles for transparent ceramics,” J. Alloy. Compd., 639, 244-251 (2015).
[54] J. Li, X. Su, S. Liu, X. Li , D. Huo, J. G. Li, Q. Zhu, M. Zhang, Y. Sang, H. Liu “A novel stearate melting method for synthesizing highly reactive YAG nanopowders,” J. Alloy. Compd., 585, 48-53 (2014).
[55] W. Liu, B. Jiang, W. Zhang, J. Li, J. Zhou, D. Zhang, Y. Pan, J. Guo, “Influence of heating rate on optical properties of Nd:YAG laser ceramic,” Ceram. Inter., 36, 2197-2201 (2010).
[56] J. Mouzon, E. Glowacki, M. Odén, “Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics,” J. Mater. Sci., 43, 2849-2856 (2008).
[57] H. H. D. Lee, “Influence of slip-casting and dry-pressing on structure evolution of alumina compacts,” J. Mater Sci., 27, 6673-6678 (1992).
[58] R. Pandu, B. Papiya, R. Kotikalapudi, B. S. Madireddy, J. Roy, P. Gadhe, S. K. Chandrashekhar, K. C. Tapas Kumar, M. G. Nitin, “Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics,” Ceram. Inter., 40, 5575-5581 (2014).
[59] Yu. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, A. A. Kaminskii, “Development of Nd3+:Y3Al5O12 laser ceramics by high-pressure colloidal slip-casting (HPCSC) method,” Opt. Mater., 31, 707-710 (2009).
[60] S. Deville, “Freeze-casting of porous ceramics: a review of current achievements and issues,” Adv. Eng. Mater., 10, 155-169 (2008).
[61] K. A. Appiagyei, G. L. Messing, J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) Influence of ball milling speed on microstructure and optical transparency of Nd YAG ceramics ceramics,” Ceram. Intl., 34, 1309-1313 (2008).
[62] Y. Lv, W. Zhang, J. Tan, Y. Sang, H. Qin, J. Hu, L. Tong, H. Liu, J. Wang, R. I. Boughton, “Dispersion of concentrated aqueous neodymia–yttria–alumina mixture with ammonium poly(acrylic acid) as dispersant,” J. Alloy. Compd., 509, 3122-3127 (2011).
[63] S. Mei, J. Yang, J. M. F. Ferreira, “Comparison of dispersants performance in slip casting of cordierite-based glass-ceramics,” Ceram. Inter., 29, 785-791 (2003).
[64] K.S. Chou, L. J. Lee, “Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry,” J. Am. Ceram. Soc., 72, 1622-1627 (1989).
[65] J. Zhou, Y.B. Pan, J. Li, W.X. Zhang, H.M. Kou, W. B. Liu, J. K. Guo, “Fabrication of YAG transparent ceramics using slip casting with ethanol,” J. Inorg. Mater., 26, 254-256 (2011).
[66] X. Yu, P. Somasundaran, “Role of polymer conformation in interparticle-bridging dominated flocculation,” J. Colloid Interface Sci., 177, 283–287, (1996).
[67] X. Li, Q. Li, “YAG ceramic processed by slip casting via aqueous slurries,” Ceram. Inter., 34, 397-401 (2008).
[68] X. Ji, J. Deng, B. Kang, H. Huang , X. Wang, W. Jing, T. Xu, “Fabrication of transparent neodymium-doped yttrium aluminum garnet ceramics by high solid loading suspensions,” Ceram. Inter., 39, 7921-7926 (2013).
[69] Y. H. Lv, H. Liu, Y. H. Sang, S. J. Liu, T. Chen, H. M. Qin, J. Y. Wang, “Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant,” J. Mater Sci., 45, 706-712 (2010).
[70] James S. Reed, “Principles of Ceramics Processing”, 2nd Ed, Wiley Interscience, New Yok, (1995).
[71] R. Pampuch, “Ceramic materials: an introduction to their Properties,” Els. Sci. Pub. Com., 130-136 (1976).
[72] Mohamed N. Rahaman, “Sintering of Ceramics”, CRC Press, New York (2003).
[73] B. Ma, T. Lu, W. Zhang, N. Wei, Z. Lu, X. Chen, Y. Shi, “Microstructural sintering evolution and sintering parameters optimization of the silica-doped Nd:YAG ceramics using the co-precipitated raw powder,” J. Euro. Ceram., 35, 2403-2412 (2015).
[74] W. Liu, B. Jiang, W. Zhang, J. Li, J. Zhou, D. Zhang, Y. Pan, J. Guo, “Influence of heating rate on optical properties of Nd:YAG laser ceramic,” Ceram. Intl., 36, 2197-2201 (2010).
[75] Z. H. Chen, J.T. Li, J.J. Xu, Z.G. Hu, “Fabrication of YAG transparent ceramics by two-step sintering,” Ceram. Inter., 34, 1709-1712 (2008).
[76] W. Zhu, Q. Chen, G. Feng, W. Wu, D. Xiao, J. Zhu, “Optical properties of the polycrystalline transparent Nd:YAG ceramics prepared by two-step sintering,” Ceram. Inter., 38, 649-652 (2012).
[77] W. Zhang, T. Lu, B. Ma, N. Wei, Z. Lu, F. Li, Y. Guan, X. Chen, W. Liu, L. Qi, “Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing,” Opt. Mater., 35, 2405-2410 (2013).
[78] M. Sokol, S. Kalabukhov, V. Kasiyan, A. Rothman, M. P. Dariel, N. Frage, “Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG,” Opt. Mater., 38, 204-210 (2014).
[79] N. L. Lin, “Solvent guide,” 2nd Ed., Chemical Industry Publication, Beijing, (1994).
[80] J. Qin, R. Yang, G. Liu, M. Lia, Y. Shi “Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process,” Mater. Res. Bull., 45 1426 (2010).
[81] C. Herring, “Effect of chanbe of Scale on Sintering phenomena”, J. Appl. Phys. 21, 301 (1950).
[82] 林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為,國立成功大學資源工程研究所碩士論文,民國98年.
[83] E. A. Barringer, H. K. Bowen, “Effects of particle packing on the sintered microstructure,” App. Phy. A, 45, 271-275 (1988).
[84] D. W. Ni, V. Esposito, S. P. V. Foghmoes, S. Ramousse, “Densification and grain growth kinetics of Ce0.9Gd0.1O1.95 in tape cast layers: The influence of porosity,” J. Euro. Ceram. Soc., 34, 2371-2379 (2014).
[85] Q. Lou, J. Zhou, Y. Qi, H. Cai, “Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications,” C. Sikalidis (Ed.), InTech Publishers, Croatia, (2011).