簡易檢索 / 詳目顯示

研究生: 林芳緯
Lin, Fang-Wei
論文名稱: 硼與鈮元素對鐵基金屬玻璃的磁與加熱性質之影響
Effect of B and Nb Elements on Magnetic and Heating Properties of Fe-based Bulk Metallic Glass
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 168
中文關鍵詞: 非晶質合金塊狀金屬玻璃磁性
外文關鍵詞: Amorphous material, bulk metallic glass, magnetic property
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁熱療系統是治療惡性腫瘤方法中的一項新技術,係藉由磁生熱效應誘發熱療針體燒灼腫瘤,達到破壞的目的。軟磁性鐵基非晶質合金具有高飽和磁化強度、低矯頑磁力以及顯著的異常渦電流損耗,指出鐵基非晶質合金具有成為熱療針材料的潛力。本實驗選用Fe-B-Y-Nb四元合金系統,探討B與Nb含量對玻璃形成能力、磁特性與升溫能力的影響。
    Fe-B-Y-Nb金屬玻璃經由真空電弧爐融煉製得,以調整B含量Fe64.5+XB27-XY4.5Nb4 (X=0, 1, 2, 3, 4)、Nb含量Fe66.5+YB25Y4.5Nb4-Y (Y=0, 0.5, 1, 1.5)兩個系列合金。進行X光繞射分析、EBSD析出相鑑定、SEM-BE影像攝影、DSC吸放熱圖譜以及VSM磁滯曲線測量。在B系列合金中,Fe66.5B25Y4.5Nb4存在最少的NbBFe析出物,析出物佔總面積的0.70%。其過冷液相區∆Tx為95,是B系列合金裡玻璃形成能力較好的成分。同時,Fe66.5B25Y4.5Nb4也具有好的軟磁性,飽和磁化強度90.7 emu/g,矯頑磁力5.4 A/m。將Fe66.5B25Y4.5Nb4置於變動磁場下5公分進行升溫,最高溫度可達117 oC。Nb系列合金中,Fe67B25Y4.5Nb3.5進一步的提升玻璃形成能力,析出物佔總面積的0.08%,過冷液相區∆Tx為97。其飽和磁化強度增強至96.3 emu/g,矯頑磁力稍增為10.7 A/m。將Fe67B25Y4.5Nb3.5置於變動磁場下5公分進行升溫,最高溫度攀升到132oC。
    B系列合金中,較少的NbBFe析出相促成飽和磁化強度高且矯頑磁力小的磁性質,使得Fe66.5B25Y4.5Nb4擁有突出的升溫能力。Nb系列合金裡,Nb含量的減少抑制了NbBFe相析出,飽和磁化強度隨之增強;同時也助長Y2O3相的成長,擴大了合金的矯頑磁力。在磁特性與析出物相互消長的的情況下,Fe67B25Y4.5Nb3.5成為本實驗中升溫能力最佳的合金。

    Electromagnetic thermoablation is a new kind therapy for tumor. Soft magnetic bulk metallic glass is considered as a potential material for thermotherapy needle in electromagnetic thermoablation due to its high saturation magnetization (Ms), low coercivity (Hc) and high unusual eddy current loss. In this study Fe-B-Y-Nb alloys are selected as experimental materials of soft magnetic bulk metallic glass. The effect of Boron and Niobium content is investigated on the glass forming ability (GFA), magnetic property and heating ability in quaternary Fe-B-Y-Nb system.
    Fe-B-Y-Nb metallic glass was formed by Arc Melting. It was a function of B content in Fe68.4B28-XY4.6Nb4 (X=0, 1, 2, 3, 4) and Nb content in Fe66.5+YB25Y4.5Nb4-Y (Y=0, 0.5, 1, 1.5) alloys. The glass forming ability and thermal property were studied by differential scanning calorimetry (DSC). The phase and microstructure were characterized by X-ray diffractometer (XRD) ,SEM-BE imgage and electron backscatter diffraction (EBSD), respectively. In addition, the magnetic property were measured by Vibrating Sample Magnetometer (VSM). The experiment for heating ability was all under the condition with 5cm distance away from coil which applied alterative magnetic field.
    It is observed that Fe66.5B25Y4.5Nb4 alloy exhibits better GFA than other B content alloys with supercooled liquid region (Tx) 95. In Nb series alloys, Fe67B25Y4.5Nb3.5 alloy shows the best GFA in the study with Tx 97. According to hysteresis loop, Ms and Hc is 90.7 emu/g, 5.4 A/m for Fe66.5B25Y4.5Nb4 alloy, and 96.3 emu/g ,10.7 A/m for Fe67B25Y4.5Nb3.5 alloy. Owing to high Ms and low Hc, the heating ability can reach high temperature as Fe66.5B25Y4.5Nb4 alloy can reach 117oC and Fe67B25Y4.5Nb3.5 alloy can reach 132 oC.
    In the B series alloys, less NbBFe causes high Ms and narrow Hc. Therefore, B25 alloy exhibites better heating ability. In the Nb series alloys, NbBFe is suppressed to enhance Ms, but Y2O3 grew to broaden Hc by reducing Nb content. Due to ebb and rise of soft magnetic property with precipitation, Fe67B25Y4.5Nb3.5 exhibited the greatest heating ability in the study.

    摘要 I Abstract III 誌謝 IIIV 總目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 塊狀非晶質合金BMG發展 5 2-2 非晶質合金設計 10 2-2-1 三大經驗法則 10 2-2-2 共晶成份 11 2-2-3 玻璃形成能力因子 12 2-3 非晶質合金性質 16 2-3-1磁性質 16 2-3-2機械性質 21 2-3-3其他性質 22 2-4 感應生熱原理 24 2-4-1磁滯損耗 24 2-4-2典型渦電流損耗 24 2-4-3異常渦電流損耗 25 第三章 材料製備與實驗方法 28 3-1 合金材料熔煉與製備 28 3-1-1合金配製 28 3-1-2真空電弧熔煉爐 28 3-1-3銅模修改 29 3-1-4試片處理 31 3-2 材料結構分析 36 3-2-1 X光繞射分析 36 3-2-2表面形貌與元素分析 36 3-2-3 EBSD分析 37 3-3 DSC熱性質分析 38 3-4 磁性質分析 39 3-4-1 VSM量測 39 3-4-2 MAFM觀察 39 3-5 鐵損值分析 40 3-5-1電阻測量 40 3-5-2變動磁場升溫量測 40 第四章 實驗結果 41 4-1 B含量對成份的影響 41 4-1-1結晶性質分析 41 4-1-2熱性質分析 62 4-1-3磁性質分析 71 4-1-4電阻率量測 73 4-1-5升溫測試 74 4-2 Nb含量對成份的影響 76 4-2-1結晶性質分析 76 4-2-2熱性質分析 90 4-2-3 Nb3.5結晶相變化分析 97 4-2-4磁性質分析 108 4-2-5電阻率量測 113 4-2-6升溫測試 115 4-3 Co添加對成份的影響 118 4-3-1結晶性質分析 118 4-3-2熱性質分析 122 4-3-3磁性質分析 128 4-3-4電阻率量測 130 4-3-5升溫測試 131 第五章 討論 133 5-1 硼含量對成份的影響 133 5-1-1玻璃形成能力討論 133 5-1-2變動磁場下升溫能力之探討 135 5-2 鈮含量對成份的影響 142 5-2-1玻璃形成能力討論 142 5-2-2變動磁場下升溫能力之探討 145 5-3 鈷添加對成份的影響 154 5-3-1玻璃形成能力討論 154 5-3-2變動磁場下升溫能力之探討 155 第六章 結論 159 參考文獻 162

    [1] C. J. Lo, C. Y. Chen, H. W. Tsai, and R. Zuchini, "Partial splenectomy using an electromagnetic thermal surgery system in a porcine model," International Journal of Hyperthermia, vol. 27, pp. 108-115, 2011.
    [2] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. New York: Wiley, 1970.
    [3] G. Bertotti, "General properties of power losses in soft ferromagnetic materials," IEEE Transactions on Magnetics, vol. 24, pp. 621-630, 1988.
    [4] K. Overshott, "The use of domain observations in understanding and improving the magnetic properties of transformer steels," IEEE Transactions on Magnetics, vol. 12, pp. 840-845, 1976.
    [5] A. Inoue and A. Takeuchi, "Recent development and application products of bulk glassy alloys," Acta Materialia, vol. 59, pp. 2243-2267, 2011.
    [6] W. H. Wang, C. Dong, and C. H. Shek, "Bulk metallic glasses," Materials Science and Engineering R, vol. 44, pp. 45-89, 2004.
    [7] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline structure in solidified gold-silicon alloys," Nature, vol. 187, pp. 869-870, 1960.
    [8] H. S. Chen, "Thermodynamic considerations on formation and stability of metallic glasses," Acta Metallurgica, vol. 22, pp. 1505-1511, 1974.
    [9] W. L. Johnson, "Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials," Progress in Materials Science, vol. 30, pp. 81-134, 1986.
    [10] H. S. Chen, "Glassy metals," Reports on Progress in Physics, vol. 43, pp. 353-354, 1980.
    [11] A. J. Drehman, A. L. Greer, and D. Turnbull, "Bulk formation of a metallic glass Pd40Ni40P20," Applied Physics Letters, vol. 41, pp. 716-717, 1982.
    [12] C. C. Koch, O. B. Cavin, C. G. Mckamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying," Applied Physics Letters, vol. 43, pp. 1017-1019, 1983.
    [13] A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, "Mg-Cu-Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method," Materials Transactions Jim, vol. 32, pp. 609-616, 1991.
    [14] A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, "Mg-Cu-Y bulk amorphous-alloys with high-tensile strength produced by a high-pressure die-casting method," Materials Transactions Jim, vol. 33, pp. 937-945, 1992.
    [15] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Materialia, vol. 48, pp. 279-306, 2000.
    [16] A. Inoue, T. Nakamura, T. Sugita, T. Zhang, and T. Masumoto, "Bulky La-Al-Tm (Tm = transition metal) amorphous alloys with high tensile strength produced by a high pressure die-casting method," Materials Transactions Jim, vol. 34, pp. 351-358, 1993.
    [17] T. Zhang, A. Inoue, and T. Masumoto, "Amorphous Zr-Al-Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100k," Materials Transactions Jim, vol. 32, pp. 1005-1010, 1991.
    [18] A. Inoue, N. Nishiyama, and T. Matsuda, "Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching," Materials Transactions Jim, vol. 37, pp. 181-184, 1996.
    [19] T. Zhang and A. Inoue, "Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region," Materials Transactions Jim, vol. 40, pp. 301-306, 1999.
    [20] A. Peker and W. L. Johnson, "A highly processable metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5," Applied Physics Letters, vol. 63, pp. 2342-2344, 1993.
    [21] N. Nishiyama and A. Inoue, "Flux treated Pd-Cu-Ni-P amorphous alloy having low critical cooling rate," Materials Transactions Jim, vol. 38, pp. 464-472, 1997.
    [22] J. F. Loffler, "Bulk metallic glasses," Intermetallics, vol. 11, pp. 529-540, 2003.
    [23] A. Inoue and B. L. Shen, "Formation and soft magnetic properties of Fe-B-Si-Zr bulk glassy alloys with high saturation magnetization above 1.5 T," Materials Transactions, vol. 43, pp. 2350-2353, 2002.
    [24] A. Inoue and B. L. Shen, "A new Fe-based bulk glassy alloy with outstanding mechanical properties," Advanced Materials, vol. 16, pp. 2189-2190, 2004.
    [25] S. J. Pang, T. Zhang, K. Asami, and A. Inoue, "Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance," Corrosion Science, vol. 44, pp. 1847-1856, 2002.
    [26] A. Inoue and J. S. Gook, "Fe-based ferromagnetic glassy alloys with wide supercooled liquid region," Materials Transactions Jim, vol. 36, pp. 1180-1183, 1995.
    [27] Z. P. Lu, C. T. Liu, C. A. Carmichael, W. D. Porter, and S. C. Deevi, "Bulk glass formation in an Fe-based Fe-Y-Zr-M (M = Cr, Co, Al)-Mo-B system," Journal of Materials Research, vol. 19, pp. 921-929, 2004.
    [28] A. Inoue, B. L. Shen, and C. T. Chang, "Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-x,Cox)(0.75)B0.2Si0.05](96)Nb4 system," Acta Materialia, vol. 52, pp. 4093-4099, 2004.
    [29] Z. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, "Structural amorphous steels," Physical Review Letters, vol. 92, p. 245503, 2004.
    [30] D. H. Kim, J. M. Park, D. H. Kim, and W. T. Kim, "Development of quaternary Fe-B-Y-Nb bulk glassy alloys with high glass-forming ability," Journal of Materials Research, vol. 22, pp. 471-477, 2007.
    [31] J. Zhang, H. Tan, Y. P. Feng, and Y. Li, "The effect of Y on glass forming ability," Scripta Materialia, vol. 53, pp. 183-187, 2005.
    [32] M. Stoica, K. Hajlaoui, J. Das, J. Eckert, and A. R. Yavari, "Fe-Nb-B bulk metallic glass with high boron content," Reviews on Advanced Materials Science, vol. 18, pp. 61-65, 2008.
    [33] M. Stoica, K. Hajlaoui, A. Lemoulec, and A. R. Yavari, "New ternary Fe-based bulk metallic glass with high boron content," Philosophical Magazine Letters, vol. 86, pp. 267-275, 2006.
    [34] K. Amiya, A. Urata, N. Nishiyama, and A. Inoue, "Fe-B-Si-Nb bulk metallic glasses with high strength above 4000 MPa and distinct plastic elongation," Materials Transactions, vol. 45, pp. 1214-1218, 2004.
    [35] D. S. Song, J. H. Kim, E. Fleury, W. T. Kim, and D. H. Kim, "Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe-Nb-B-Y system," Journal of Alloys and Compounds, vol. 389, pp. 159-164, 2005.
    [36] W. L. Johnson, "Bulk glass-forming metallic alloys: Science and technology," Mrs Bulletin, vol. 24, pp. 42-56, 1999.
    [37] D. Turnbull and J. C. Fisher, "Rate of nucleation in condensed systems," Journal of Chemical Physics, vol. 17, pp. 71-73, 1949.
    [38] Z. P. Lu, Y. Li, and S. C. Ng, "Reduced glass transition temperature and glass forming ability of bulk glass forming alloys," Journal of Non-Crystalline Solids, vol. 270, pp. 103-114, 2000.
    [39] A. Inoue, T. Zhang, K. Kurosaka, and W. Zhang, "High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti-Be system," Materials Transactions, vol. 42, pp. 1800-1804, 2001.
    [40] T. A. Waniuk, J. Schroers, and W. L. Johnson, "Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys," Applied Physics Letters, vol. 78, pp. 1213-1215, 2001.
    [41] Z. P. Lu, T. T. Goh, Y. Li, and S. C. Ng, "Glass formation in La-based La-Al-Ni-Cu-(Co) alloys by Bridgman solidification and their glass forming ability," Acta Materialia, vol. 47, pp. 2215-2224, 1999.
    [42] Z. P. Lu, H. Tan, Y. Li, and S. C. Ng, "The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses," Scripta Materialia, vol. 42, pp. 667-673, 2000.
    [43] Z. P. Lu and C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses," Acta Materialia, vol. 50, pp. 3501-3512, 2002.
    [44] Z. L. Long, H. Q. Wei, Y. H. Ding, P. Zhang, G. Q. Xie, and A. Inoue, "A new criterion for predicting the glass-forming ability of bulk metallic glasses," Journal of Alloys and Compounds, vol. 475, pp. 207-219, 2009.
    [45] K. Mondal and B. S. Murty, "On the parameters to assess the glass forming ability of liquids," Journal of Non-Crystalline Solids, vol. 351, pp. 1366-1371, 2005.
    [46] Q. J. Chen, J. Shen, D. L. Zhang, H. B. Fan, J. Sun, and D. G. McCartney, "A new criterion for evaluating the glass-forming ability of bulk metallic glasses," Materials Science and Engineering A Structural Materials Properties Microstructure and Processing, vol. 433, pp. 155-160, 2006.
    [47] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New criterion of glass forming ability for bulk metallic glasses," Journal of Applied Physics, vol. 101, 2007.
    [48] B. S. Dong, S. X. Zhou, D. R. Li, and C. W. Lu, "A new criterion for predicting glass forming ability of bulk metallic glasses and some critical discussions," Progress in Natural Science-Materials International, vol. 21, pp. 164-172, 2011.
    [49] L. X. Liao and Z. Altounian, "Formation, crystallization, and magnetic properties of Nd-Fe-B glasses," Journal of Applied Physics, vol. 66, pp. 768-771, 1989.
    [50] T. S. Chin, Handbook of Magnetic Technology. Taiwan: Taiwan Association for Magnrtic Technology, 2002.
    [51] F. D. Wan and C. L. Ma, Physics of Magnetism. Beijing: Publishing House of Electronic Industry, 1999.
    [52] S. Chikazumi and C. D. G. Jr, Physics of Ferromagnetism. New York: Clarendon Press, 1997.
    [53] J. D. Livingston, "A review of coercivity mechanisms," Journal of Applied Physics, vol. 52, pp. 2544-2548, 1981.
    [54] G. Herzer, "Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets," IEEE Transactions on Magnetics, vol. 26, pp. 1397-1402, 1990.
    [55] G. Herzer, "Nanocrystalline soft magnetic materials," Physica Scripta, vol. 1993, pp. 307-314, 1993.
    [56] I. Panagiotopoulos, L. Withanawasam, and G. C. Hadjipanayis, "Exchange spring behavior in nanocomposite hard magnetic materials," Journal of Magnetism and Magnetic Materials, vol. 152, pp. 353-358, 1996.
    [57] E. F. Kneller and R. Hawig, "The exchange spring magnet : a new material principle for permanent magnets," IEEE Transactions on Magnetics, vol. 27, pp. 3588-3600, 1991.
    [58] G. Herzer, "Grain structure and magnetism of nanocrystalline ferromagnets," IEEE Transactions on Magnetics, vol. 25, pp. 3327-3329, 1989.
    [59] K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, "Low core losses of nanocrystalline Fe-M-B (M=Zr, Hf, or Nb) alloys," Journal of Applied Physics, vol. 74, pp. 3316-3322, 1993.
    [60] H. Choi-Yim, R. D. Conner, F. Szuecs, and W. L. Johnson, "Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites," Acta Materialia, vol. 50, pp. 2737-2745, 2002.
    [61] C. C. Hays, C. P. Kim, and W. L. Johnson, "Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions," Physical Review Letters, vol. 84, pp. 2901-2904, 2000.
    [62] C. D. Graham, "Physical origin of losses in conducting ferromagnetic materials," Journal of Applied Physics, vol. 53, pp. 8276-8280, 1982.
    [63] E. W. Lee, "Eddy current losses in thin ferromagnetic sheets," 1958.
    [64] L. Green, "Simple formulae for skin effect," Electronics World, vol. 109, pp. 44-46, 2003.
    [65] O. M. Gatous and J. Pissolato, "Frequency dependent skin effect formulation for resistance and internal inductance of a solid cylindrical conductor," Iee Proceedings-Microwaves Antennas and Propagation, vol. 151, pp. 212-216, 2004.
    [66] W. C. Moreland, "Induction range : its performance and its development problems," IEEE Transactions on Industry Applications, vol. IA-9, pp. 81-85, 1973.
    [67] K. H. Stewart, Ferromagnetic Domains. London: University Press, 1954.
    [68] R. H. Pry and C. P. Bean, "Calculation of the energy loss in magnetic sheet materials using a domain model," Journal of Applied Physics, vol. 29, pp. 532-533, 1958.
    [69] E. W. Lee, "Eddy current losses in thin ferromagnetic sheets," The Institution of Electrical Engineers, vol. 8, pp. 337-342, 1958.
    [70] C. R. Boon and J. A. Robey, "Effect of domain wall motion on power loss in grain oriented silicon iron sheet," Proceedings of the Institution of Electrical Engineers-London, vol. 115, pp. 1535-1536, 1968.
    [71] K. J. Overshott and M. G. Blundell, "The variation of power loss and domain-wall spacing with applied stress in wide amorphous ribbon material," IEEE Transactions on Magnetics, vol. 16, pp. 1221-1223, 1980.
    [72] M. G. Blundell and K. J. Overshott, "A comparison of the power loss and domain-structure of wide and narrow amorphous ribbons," IEEE Transactions on Magnetics, vol. 16, pp. 1224-1226, 1980.
    [73] K. J. Overshott, "The causes of the anomalous loss in amorphous ribbon materials," IEEE Transactions on Magnetics, vol. 17, pp. 2698-2700, 1981.
    [74] "PDF Card," International Centre for Data Diffraction, 2012.
    [75] C. C. Ma, and T. S. Lee, "The study of Fe-based bulk amorphous and noncrystalline soft magnetic alloys," Material Science and Engineering, National Tsing Hua University, Taiwan, 2006
    [76] D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, "Strategy for pinpointing the best glass-forming alloys," Applied Physics Letters, vol. 86, pp. 1-3,2005.
    [77] W. P. A. Mucha, "The influence of yttrium addition on the GFA of selected Fe-based BMG," Archives of Materials Science and Engineering, vol. 44, pp. 87-95, 2010.
    [78] Z. L. Long, Y. Shao, F. Xu, H. Q. Wei, Z. C. Zhang, P. Zhang, et al., "Y effects on magnetic and mechanical properties of Fe-based Fe-Nb-Hf-Y-B bulk glassy alloys with high glass-forming ability," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 164, pp. 1-5, 2009.
    [79] Z. P. Lu, C. T. Liu, and W. D. Porter, "Role of yttrium in glass formation of Fe-based bulk metallic glasses," Applied Physics Letters, vol. 83, pp. 2581-2583, 2003.
    [80] Y. Zhang, M. X. Pan, D. Q. Zhao, R. J. Wang, and W. H. Wang, "Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition," Materials Transactions Jim, vol. 41, pp. 1410-1414, 2000.
    [81] R. C. Weast, CRC handbook of chemistry and physics. Colorado: CRC Press, 1988.
    [82] B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials. Canada: John Wiley & Sons, 2011.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE