簡易檢索 / 詳目顯示

研究生: 鄭翔耀
Cheng, Hsiao-Yao
論文名稱: 脂肪幹細胞於膠原蛋白基質中之血管新生潛能研究
Angiogenic potential of adipose-derived stem cells (ADSCs) in collagen matrix
指導教授: 黃玲惠
Huang, Lynn L.H.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 血管新生膠原蛋白脂肪幹細胞
外文關鍵詞: angiogenesis, collagen, adipose-derived stem cells
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在進行組織修復時,新的組織生長與發育需要適當的血管來傳送養分以及移除廢物,所以血管新生扮演非常重要的地位。脂肪幹細胞的取得及應用具有立即性,沒有道德倫理問題,且取得的細胞數量多,又有良好的分化能力,所以我們選擇脂肪組織為組織修復的細胞來源,利用幹細胞的特性,並以生醫材料膠原蛋白,作為細胞培養的立體支架,探討膠原蛋白基質對脂肪幹細胞血管新生影響,評估脂肪幹細胞是否適合做為組織修復之血管新生細胞來源。
    實驗結果發現萃取的人類脂肪組織細胞有三群細胞。三群細胞進一步分析其分子標誌,確定三群細胞主要有兩類型的細胞:CD34+及CD45+的細胞,其中CD34+的細胞有30~40%。分析CD34+細胞的分子標誌,結果指出:(1)間葉幹細胞的分子標誌CD29比例佔49.3%、CD44比例佔79.02%、CD90比例佔96.61%,CD105比例佔4.62% (2)內皮前驅細胞的分子標誌CD34比例佔100%、FLK-1比例佔5.74%、CD133比例佔2.53%。所以CD34+細胞具有間葉幹細胞的分子特性。
    我們也比較P0 Fresh (P0F) CD34+細胞與培養過的ADSCs-derived CD34+細胞之分子表現,發現CD34的表現只在P0F,經培養其表現便迅速下降,CD105則剛好相反。
    另外,將ADSCs-derived CD34+細胞於二維膠原蛋白上或三維之膠原蛋白基質中進行培養,結果指出膠原蛋白可以促進vWF與SMA的表現,但CD31與NG2並不表現。將ADSCs-derived CD34+細胞於膠原蛋白中進行長達28天的培養,結果仍然一樣。由本研究結果,我們對ADSCs-derived CD34+細胞的基本特性有更進一步的了解,且ADSCs-derived CD34+細胞具有分化成血管的潛力,未來可以使用實驗室的PCM,搭配適當的生長因子,對血管新生做更深入的研究。

      Blood supply is very important in tissues, especially during tissue repairing. In the latter context, autologous adipose-derived stem cells (ADSCs) can provide an immediate and abundant source for tissue repairing to differentiate into proper tissue cells without ethical conflicts. In the current study, ADSCs were chosen to investigate their angiogenic potential in collagen matrix in order to assess the suitability of ADSCs to facilitate vessel formation during tissue repairing.

      The ADSCs from human adipose tissue contain three subsets of cells according to cell size and coarseness and which include CD34+ and CD45+ cells. The percentage of CD34+ cells is 30~40% in total. Various molecular markers were further analyzed in the purified CD34+ cells by flow cytometry. Some molecular markers representative of mesenchymal stem cells were detected and the CD29 is 49.3%, CD44 is 79.02%, CD90 is 96.61%, and CD105 is 4.62%. Molecular markers of endothelial progenitor cells in CD34+ cells were 100% of CD34, 5.74% of FLK-1, and 2.53% of CD133. The results indicated that the CD34+ cells have somewhat the characteristics of mesenchymal stem cells and endothelial progenitor cells. The markers of CD34 subsided and CD105 elevated after cell culturing.

      The expressions of vWF and SMA were stimulated after culturing ADSCs-derived CD34+ cells on or in collagen matrix. The molecular markers of CD31 and NG2, representative of mature endothelial cells and pericytes respectively, were not detected in this system even cultured for 28 days. In conclusion, ADSCs-derived CD34+ cells may have angiogenic potential to differentiate into cells related to vessel formation in collagen matrix.

    目錄 中文摘要.....................................I 英文摘要.....................................II 誌謝.........................................III 目錄.........................................IV 表目錄.......................................VI 圖目錄.......................................VII 符號說明.....................................VIII 第一章 文獻回顧與研究動機...................1 1.1 血管新生的重要性........................1 1.1.1 血管的組成與細胞來源..................1 1.1.2 血管新生過程..........................3 1.2 幹細胞的選擇............................6 1.3 脂肪幹細胞之分子標誌....................8 1.4 脂肪幹細胞之分化能力....................9 1.5 脂肪幹細胞之血管新生潛力................10 1.6 脂肪幹細胞於基質之血管新生研究..........11 1.7 研究動機................................12 第二章 實驗儀器、藥品與方法.................13 2.1 實驗儀器................................13 2.2 實驗藥品................................14 2.3 實驗方法................................16 2.3.1 人類脂肪組織之取得....................16 2.3.2 人類脂肪組織之細胞萃取與培養..........16 2.3.3 萃取人類脂肪組織之細胞群及分子標誌     分析..................................17 2.3.4 分離CD34+細胞群並分析不同代數之分子     標誌變化..............................17 2.3.5 分離的CD34+細胞群之adipocyte及     osteocyte分化.........................18 2.3.6 高濃度膠原蛋白的製備..................19 2.3.7 ADSCs-derived CD34+細胞於TCP及膠原     蛋白膠上之培養........................19 2.3.8 ADSCs-derived CD34+細胞於膠原蛋白     膠之三維培養..........................20 2.3.9 免疫組織化學或光染色..................21 第三章 結果與討論...........................22 3.1 實驗結果................................22 3.1.1 人類脂肪組織之細胞萃..................22 3.1.2 萃取人類脂肪組織之細胞群及分子標     誌分析................................22 3.1.3 脂肪組織細胞中之CD34+細胞群之分子     標誌特性分析..........................22 3.1.4 分離CD34+細胞群並分析不同代數之分     子標誌變化............................23 3.1.5 分離的CD34+細胞群之adipocyte及     osteocyte分化.........................24 3.1.6 高濃度膠原蛋白的濃度分析..............24 3.1.7 膠原蛋白對ADSCs-derived CD34+     細胞之分化影響........................24 3.1.8 ADSCs-derived CD34+細胞於膠原蛋白     膠之三維培養..........................25 3.2 實驗討論................................27 第四章 結論.................................32 第五章 文獻.................................34 自述.........................................55 表目錄 表1.1:不同細胞代數的人類脂肪幹細胞之特性....52 表1.2:不同代數的人類脂肪幹細胞之各分子標     誌比例................................53 表3.1:脂肪細胞中,fresh CD34+細胞各分子     標誌表現的比例........................54 圖目錄 圖1.1:成熟血管的組成成分....................2 圖1.2:血管細胞的來源........................3 圖1.3:血管新生的過程........................6 圖1.4:脂肪組織與內皮細胞可能來自相同的前     驅細胞................................10 圖3.1:脂肪幹細胞的形態與增生情形............37 圖3.2:P0F ADSCs之細胞群及分子標誌...........38 圖3.3:P0F ADSCs中CD34+細胞群之各分子標誌     表現..................................39 圖3.4:P0F ADSCs中之CD34+細胞篩選............41 圖3.5:P0F CD34+細胞培養後,各分子標誌的     表現..................................42 圖3.6:P0F CD34+細胞培養後,各分子於不同     代數之表現情形........................44 圖3.7:ADSCs-derived CD34+ 細胞之分化能力....45 圖3.8:不同代之ADSCs-derived CD34+細胞之     分化能力..............................46 圖3.9:膠原蛋白對ADSCs-derived CD34+細胞     (P4)之分化影響........................47 圖3.10:誘導液促進ADSCs-derived CD34+細胞 (P4)之內皮及管壁細胞的分化............48 圖3.11:膠原蛋白膠中,ADSCs-derived CD34+     細胞(P5)於DMEM-10%FBS培養下,內皮     及管壁細胞之分子表現.................49 圖3.12:膠原蛋白膠中,ADSCs-derived CD34+     細胞(P4)於DMEM-2%FBS/或10%FBS/     100ng/ml VEGF/20ng/ml bFGF培養下,     內皮及管壁細胞之分子表現.............50 圖3.13:膠原蛋白膠中,ADSCs-derived CD34+     細胞(P5)於DMEM-10%FBS培養下,第21     及28天內皮及管壁細胞之分子表現.......51

    1. Tonnesen, M.G., X. Feng, and R.A. Clark, Angiogenesis in wound healing. J  
      Investig Dermatol Symp Proc, 2000. 5(1): p. 40-6.
    2. Conway, E.M., D. Collen, and P. Carmeliet, Molecular mechanisms of blood  
      vessel growth. Cardiovasc Res, 2001. 49(3): p. 507-21.
    3. Simper, D., et al., Endothelial progenitor cells are decreased in blood of cardiac
      allograft patients with vasculopathy and endothelial cells of noncardiac origin are   
      enriched in transplant atherosclerosis. Circulation, 2003. 108(2): p. 143-9.
    4. Szmitko, P.E., et al., Endothelial progenitor cells: new hope for a broken
      heart. Circulation, 2003. 107(24): p. 3093-100.
    5. Freedman, S.B. and J.M. Isner, Therapeutic angiogenesis for coronary artery
      disease. Ann Intern Med, 2002. 136(1): p. 54-71.
    6. Salcedo, R., et al., Vascular endothelial growth factor and basic  
      fibroblast growth factor induce expression of CXCR4 on human endothelial
      cells: In vivo neovascularization induced by stromal-derived factor-1alpha.
      Am J Pathol, 1999. 154(4): p. 1125-35.
    7. Black, A.F., et al., In vitro reconstruction of a human capillary-like
      network in a tissue-engineered skin equivalent. Faseb J, 1998. 12(13): p.
      1331-40.
    8. Peterson, B., et al., Healing of critically sized femoral defects, using
      genetically modified mesenchymal stem cells from human adipose tissue.
      Tissue Eng, 2005. 11(1-2): p. 120-9.
    9. Jain, R.K., Molecular regulation of vessel maturation. Nat Med, 2003. 9(6): p. 685-
      93.
    10. Carmeliet, P., Developmental biology. One cell, two fates. Nature, 2000. 408
      (6808): p. 43, 45.
    11. Yamashita, J., et al., Flk1-positive cells derived from embryonic stem cells serve as  
      vascular progenitors. Nature, 2000. 408 (6808): p. 92-6.
    12. Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis. Nat Med,
      2000. 6(4): p. 389-95.
    13. Boudreau, N., et al., Induction of the
      angiogenic phenotype by Hox D3. J Cell Biol,
      1997. 139(1): p. 257-64.
    14. Chambers, R.C., et al., Global expression profiling of fibroblast responses to   
      transforming growth factor-beta1 reveals the induction of inhibitor of
      differentiation-1 and provides evidence of  smooth muscle cell phenotypic
      switching. Am J Pathol, 2003. 162 (2): p. 533-46.
    15. Pepper, M.S., Transforming growth factor-beta: vasculogenesis, angiogenesis, and
      vessel wall integrity. Cytokine Growth Factor Rev, 1997. 8(1): p. 21-43.
    16. Rossant, J. and L. Howard, Signaling pathways in vascular development. Annu Rev
      Cell Dev Biol, 2002. 18: p. 541-73.
    17. Hall, P.A. and F.M. Watt, Stem cells: the generation and maintenance of   
      cellular diversity. Development, 1989. 106(4): p. 619-33.
    18. Pfendler, K.C. and E. Kawase, The potential of stem cells. Obstet Gynecol Surv,
      2003. 58 (3): p. 197-208.
    19. Mayani, H. and P.M. Lansdorp, Biology of human umbilical cord blood-derived
      hematopoietic stem/progenitor cells. Stem Cells, 1998. 16(3): p. 153-65.
    20. Zuk, P.A., et al., Multilineage cells from human adipose tissue:   
      implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
    21. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem  
      cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
    22. Gronthos, S., et al., Surface protein characterization of human adipose
      tissue-derived stromal cells. J Cell Physiol, 2001. 189(1): p. 54-63.
    23. Safford, K.M., et al., Neurogenic differentiation of murine and human adipose-
      derived stromal cells. Biochem Biophys Res Commun, 2002. 294(2): p. 371-9.
    24. Brzoska, M., et al., Epithelial differentiation of human adipose tissue-derived adult
      stem cells. Biochem Biophys Res Commun, 2005. 330(1): p. 142-50.
    25. Seo, M.J., et al., Differentiation of human adipose stromal cells into hepatic lineage
      in vitro and in vivo. Biochem Biophys Res Commun, 2005. 328(1): p. 258-64.
    26. Oswald, J., et al., Mesenchymal stem cells can be differentiated into  
      endothelial cells in vitro. Stem Cells, 2004. 22(3): p. 377-84.
    27. Bouloumie, A., et al., Angiogenesis in adipose tissue. Ann Endocrinol  
      (Paris), 2002. 63(2 Pt 1): p. 91-5.
    28. Castellot, J.J., Jr., M.J. Karnovsky, and B.M. Spiegelman, Differentiation-dependent  
      stimulation of neovascularization and endothelial cell chemotaxis by 3T3
      adipocytes. Proc Natl Acad Sci U S A, 1982. 79(18): p. 5597-601.
    29. Dobson, D.E., et al., 1-Butyryl-glycerol: a novel angiogenesis factor
      secreted by differentiating adipocytes. Cell, 1990. 61(2): p. 223-30.
    30. Planat-Benard, V., et al., Plasticity of human adipose lineage cells toward
      endothelial cells: physiological and therapeutic perspectives. Circulation,   
      2004. 109(5): p. 656-63.
    31. Miranville, A., et al., Improvement of postnatal neovascularization by
      human adipose tissue-derived stem cells. Circulation, 2004. 110(3): p. 349-
      55.
    32. Asahara, T., et al., Isolation of putative progenitor endothelial cells for
      angiogenesis. Science, 1997. 275(5302): p. 964-7.
    33. Pelosi, E., et al., Identification of the hemangioblast in postnatal life.
      Blood, 2002. 100(9): p. 3203-8.
    34. Rosenzweig, A., Endothelial progenitor cells. N Engl J Med, 2003. 348(7):
      p. 581-2.
    35. Martinez-Estrada, O.M., et al., Human adipose tissue as a source of Flk-1+
      cells: new method of differentiation and expansion. Cardiovasc Res, 2005. 65
      (2): p. 328-33.
    36. Hristov, M., W. Erl, and P.C. Weber, Endothelial progenitor cells: isolation and
      characterization. Trends Cardiovasc Med, 2003. 13(5): p. 201-  6.
    37. Peichev, M., et al., Expression of VEGFR-2 and AC133 by circulating human
      CD34(+) cells identifies a population of functional endothelial precursors.
      Blood, 2000. 95(3): p. 952-8.
    38. Rafii, S. and D. Lyden, Therapeutic stem and progenitor cell transplantation for
      organ vascularization and regeneration. Nat Med, 2003. 9(6): p. 702-12.
    39. Cao, Y., et al., Human adipose tissue-derived stem cells differentiate into
      endothelial cells in vitro and improve postnatal neovascularization in vivo.
      Biochem Biophys Res Commun, 2005. 332(2): p. 370-379.
    40. Rodriguez, A.M., et al., The human adipose tissue is a source of
      multipotent stem cells. Biochimie, 2005. 87(1): p. 125-8.
    41. Shpall, E.J., et al., Stem cell isolation. Curr Opin Hematol, 1995. 2(6):
      p. 452-9.

    下載圖示 校內:2010-02-08公開
    校外:2010-02-08公開
    QR CODE