| 研究生: |
鄭翔耀 Cheng, Hsiao-Yao |
|---|---|
| 論文名稱: |
脂肪幹細胞於膠原蛋白基質中之血管新生潛能研究 Angiogenic potential of adipose-derived stem cells (ADSCs) in collagen matrix |
| 指導教授: |
黃玲惠
Huang, Lynn L.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 血管新生 、膠原蛋白 、脂肪幹細胞 |
| 外文關鍵詞: | angiogenesis, collagen, adipose-derived stem cells |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在進行組織修復時,新的組織生長與發育需要適當的血管來傳送養分以及移除廢物,所以血管新生扮演非常重要的地位。脂肪幹細胞的取得及應用具有立即性,沒有道德倫理問題,且取得的細胞數量多,又有良好的分化能力,所以我們選擇脂肪組織為組織修復的細胞來源,利用幹細胞的特性,並以生醫材料膠原蛋白,作為細胞培養的立體支架,探討膠原蛋白基質對脂肪幹細胞血管新生影響,評估脂肪幹細胞是否適合做為組織修復之血管新生細胞來源。
實驗結果發現萃取的人類脂肪組織細胞有三群細胞。三群細胞進一步分析其分子標誌,確定三群細胞主要有兩類型的細胞:CD34+及CD45+的細胞,其中CD34+的細胞有30~40%。分析CD34+細胞的分子標誌,結果指出:(1)間葉幹細胞的分子標誌CD29比例佔49.3%、CD44比例佔79.02%、CD90比例佔96.61%,CD105比例佔4.62% (2)內皮前驅細胞的分子標誌CD34比例佔100%、FLK-1比例佔5.74%、CD133比例佔2.53%。所以CD34+細胞具有間葉幹細胞的分子特性。
我們也比較P0 Fresh (P0F) CD34+細胞與培養過的ADSCs-derived CD34+細胞之分子表現,發現CD34的表現只在P0F,經培養其表現便迅速下降,CD105則剛好相反。
另外,將ADSCs-derived CD34+細胞於二維膠原蛋白上或三維之膠原蛋白基質中進行培養,結果指出膠原蛋白可以促進vWF與SMA的表現,但CD31與NG2並不表現。將ADSCs-derived CD34+細胞於膠原蛋白中進行長達28天的培養,結果仍然一樣。由本研究結果,我們對ADSCs-derived CD34+細胞的基本特性有更進一步的了解,且ADSCs-derived CD34+細胞具有分化成血管的潛力,未來可以使用實驗室的PCM,搭配適當的生長因子,對血管新生做更深入的研究。
Blood supply is very important in tissues, especially during tissue repairing. In the latter context, autologous adipose-derived stem cells (ADSCs) can provide an immediate and abundant source for tissue repairing to differentiate into proper tissue cells without ethical conflicts. In the current study, ADSCs were chosen to investigate their angiogenic potential in collagen matrix in order to assess the suitability of ADSCs to facilitate vessel formation during tissue repairing.
The ADSCs from human adipose tissue contain three subsets of cells according to cell size and coarseness and which include CD34+ and CD45+ cells. The percentage of CD34+ cells is 30~40% in total. Various molecular markers were further analyzed in the purified CD34+ cells by flow cytometry. Some molecular markers representative of mesenchymal stem cells were detected and the CD29 is 49.3%, CD44 is 79.02%, CD90 is 96.61%, and CD105 is 4.62%. Molecular markers of endothelial progenitor cells in CD34+ cells were 100% of CD34, 5.74% of FLK-1, and 2.53% of CD133. The results indicated that the CD34+ cells have somewhat the characteristics of mesenchymal stem cells and endothelial progenitor cells. The markers of CD34 subsided and CD105 elevated after cell culturing.
The expressions of vWF and SMA were stimulated after culturing ADSCs-derived CD34+ cells on or in collagen matrix. The molecular markers of CD31 and NG2, representative of mature endothelial cells and pericytes respectively, were not detected in this system even cultured for 28 days. In conclusion, ADSCs-derived CD34+ cells may have angiogenic potential to differentiate into cells related to vessel formation in collagen matrix.
1. Tonnesen, M.G., X. Feng, and R.A. Clark, Angiogenesis in wound healing. J
Investig Dermatol Symp Proc, 2000. 5(1): p. 40-6.
2. Conway, E.M., D. Collen, and P. Carmeliet, Molecular mechanisms of blood
vessel growth. Cardiovasc Res, 2001. 49(3): p. 507-21.
3. Simper, D., et al., Endothelial progenitor cells are decreased in blood of cardiac
allograft patients with vasculopathy and endothelial cells of noncardiac origin are
enriched in transplant atherosclerosis. Circulation, 2003. 108(2): p. 143-9.
4. Szmitko, P.E., et al., Endothelial progenitor cells: new hope for a broken
heart. Circulation, 2003. 107(24): p. 3093-100.
5. Freedman, S.B. and J.M. Isner, Therapeutic angiogenesis for coronary artery
disease. Ann Intern Med, 2002. 136(1): p. 54-71.
6. Salcedo, R., et al., Vascular endothelial growth factor and basic
fibroblast growth factor induce expression of CXCR4 on human endothelial
cells: In vivo neovascularization induced by stromal-derived factor-1alpha.
Am J Pathol, 1999. 154(4): p. 1125-35.
7. Black, A.F., et al., In vitro reconstruction of a human capillary-like
network in a tissue-engineered skin equivalent. Faseb J, 1998. 12(13): p.
1331-40.
8. Peterson, B., et al., Healing of critically sized femoral defects, using
genetically modified mesenchymal stem cells from human adipose tissue.
Tissue Eng, 2005. 11(1-2): p. 120-9.
9. Jain, R.K., Molecular regulation of vessel maturation. Nat Med, 2003. 9(6): p. 685-
93.
10. Carmeliet, P., Developmental biology. One cell, two fates. Nature, 2000. 408
(6808): p. 43, 45.
11. Yamashita, J., et al., Flk1-positive cells derived from embryonic stem cells serve as
vascular progenitors. Nature, 2000. 408 (6808): p. 92-6.
12. Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis. Nat Med,
2000. 6(4): p. 389-95.
13. Boudreau, N., et al., Induction of the
angiogenic phenotype by Hox D3. J Cell Biol,
1997. 139(1): p. 257-64.
14. Chambers, R.C., et al., Global expression profiling of fibroblast responses to
transforming growth factor-beta1 reveals the induction of inhibitor of
differentiation-1 and provides evidence of smooth muscle cell phenotypic
switching. Am J Pathol, 2003. 162 (2): p. 533-46.
15. Pepper, M.S., Transforming growth factor-beta: vasculogenesis, angiogenesis, and
vessel wall integrity. Cytokine Growth Factor Rev, 1997. 8(1): p. 21-43.
16. Rossant, J. and L. Howard, Signaling pathways in vascular development. Annu Rev
Cell Dev Biol, 2002. 18: p. 541-73.
17. Hall, P.A. and F.M. Watt, Stem cells: the generation and maintenance of
cellular diversity. Development, 1989. 106(4): p. 619-33.
18. Pfendler, K.C. and E. Kawase, The potential of stem cells. Obstet Gynecol Surv,
2003. 58 (3): p. 197-208.
19. Mayani, H. and P.M. Lansdorp, Biology of human umbilical cord blood-derived
hematopoietic stem/progenitor cells. Stem Cells, 1998. 16(3): p. 153-65.
20. Zuk, P.A., et al., Multilineage cells from human adipose tissue:
implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
21. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem
cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
22. Gronthos, S., et al., Surface protein characterization of human adipose
tissue-derived stromal cells. J Cell Physiol, 2001. 189(1): p. 54-63.
23. Safford, K.M., et al., Neurogenic differentiation of murine and human adipose-
derived stromal cells. Biochem Biophys Res Commun, 2002. 294(2): p. 371-9.
24. Brzoska, M., et al., Epithelial differentiation of human adipose tissue-derived adult
stem cells. Biochem Biophys Res Commun, 2005. 330(1): p. 142-50.
25. Seo, M.J., et al., Differentiation of human adipose stromal cells into hepatic lineage
in vitro and in vivo. Biochem Biophys Res Commun, 2005. 328(1): p. 258-64.
26. Oswald, J., et al., Mesenchymal stem cells can be differentiated into
endothelial cells in vitro. Stem Cells, 2004. 22(3): p. 377-84.
27. Bouloumie, A., et al., Angiogenesis in adipose tissue. Ann Endocrinol
(Paris), 2002. 63(2 Pt 1): p. 91-5.
28. Castellot, J.J., Jr., M.J. Karnovsky, and B.M. Spiegelman, Differentiation-dependent
stimulation of neovascularization and endothelial cell chemotaxis by 3T3
adipocytes. Proc Natl Acad Sci U S A, 1982. 79(18): p. 5597-601.
29. Dobson, D.E., et al., 1-Butyryl-glycerol: a novel angiogenesis factor
secreted by differentiating adipocytes. Cell, 1990. 61(2): p. 223-30.
30. Planat-Benard, V., et al., Plasticity of human adipose lineage cells toward
endothelial cells: physiological and therapeutic perspectives. Circulation,
2004. 109(5): p. 656-63.
31. Miranville, A., et al., Improvement of postnatal neovascularization by
human adipose tissue-derived stem cells. Circulation, 2004. 110(3): p. 349-
55.
32. Asahara, T., et al., Isolation of putative progenitor endothelial cells for
angiogenesis. Science, 1997. 275(5302): p. 964-7.
33. Pelosi, E., et al., Identification of the hemangioblast in postnatal life.
Blood, 2002. 100(9): p. 3203-8.
34. Rosenzweig, A., Endothelial progenitor cells. N Engl J Med, 2003. 348(7):
p. 581-2.
35. Martinez-Estrada, O.M., et al., Human adipose tissue as a source of Flk-1+
cells: new method of differentiation and expansion. Cardiovasc Res, 2005. 65
(2): p. 328-33.
36. Hristov, M., W. Erl, and P.C. Weber, Endothelial progenitor cells: isolation and
characterization. Trends Cardiovasc Med, 2003. 13(5): p. 201- 6.
37. Peichev, M., et al., Expression of VEGFR-2 and AC133 by circulating human
CD34(+) cells identifies a population of functional endothelial precursors.
Blood, 2000. 95(3): p. 952-8.
38. Rafii, S. and D. Lyden, Therapeutic stem and progenitor cell transplantation for
organ vascularization and regeneration. Nat Med, 2003. 9(6): p. 702-12.
39. Cao, Y., et al., Human adipose tissue-derived stem cells differentiate into
endothelial cells in vitro and improve postnatal neovascularization in vivo.
Biochem Biophys Res Commun, 2005. 332(2): p. 370-379.
40. Rodriguez, A.M., et al., The human adipose tissue is a source of
multipotent stem cells. Biochimie, 2005. 87(1): p. 125-8.
41. Shpall, E.J., et al., Stem cell isolation. Curr Opin Hematol, 1995. 2(6):
p. 452-9.