| 研究生: |
蔡宜庭 Tsai, Yi-Ting |
|---|---|
| 論文名稱: |
以化學氣相沉積法製備石墨烯薄膜 Fabrication of graphene films by chemical vapor deposition |
| 指導教授: |
洪敏雄
Hon, Min-Hiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 石墨烯 、化學氣相沉積 、透明導電膜 |
| 外文關鍵詞: | graphene, chemical vapor deposition, transparent conductive film. |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2010年諾貝爾物理獎揭曉,英國曼徹斯特大學的Andre Geim和Konstantin Novoselov等人因為石墨烯的開創性實驗而獲獎。石墨烯擁有極優異的光學、電學、力學和熱學性能特性,原料相對取得容易,未來可望有機會取代Indium-Tin-Oxide(ITO)。
本研究以0.025mm厚的銅箔當做基板,利用甲烷(CH4)當做反應氣體,以化學氣相沉積(chemical vapor deposition)的方式來成長石墨烯(graphene)薄膜,藉由改變成長時間、成長溫度、成長壓力和成長時的氫氣流量等參數來探討製程和薄膜品質的關係,並找出接近單層且品質佳的石墨烯薄膜成長參數,而在最後拉曼分析結果呈現也顯示是趨近於單層並且品質好的石墨烯薄膜;本研究也試著用不鏽鋼基板來成長,最後在透明導電膜的應用方面,就將成長好的石墨烯薄膜轉移到PDMS(polydimethylsiloxane)基板上並測量其穿透度和片電阻,最佳值穿透度為96.1%、片電阻為2.848X104 Ohm/sq。
Graphene, a newly isolated form of carbon, provides a rich level fundamental physics and practical applications. It was first founded in 2004, and then there were two recipients for the Nobel Prize in Physics in the year 2010; Andre Geim and Konstantin Novoselov. They received the award for their groundbreaking experiments regarding the two-dimensional material graphene, which is widely heralded to be the next big thing after plastic. Amazingly, only six years, graphene has led to a deluge of international research interest.
In this work, we use 0.025mm thick copper as the substrate and methane as reactant gas to fabricate high quality graphene. And we try to modify the growth time, temperature, pressure and hydrogen flow rate during the growth stage, in order to find the moderate parameter for the perfect single-layer graphene growth. Moreover, stainless steel foils was also used as the substrate for the graphene growth.
For the transparent conductive films, we use the as-grown graphene films and transfer it to the PDMS(polydimethylsiloxane) substrate, and it’s found to absorb 3.5% of incident white light, the best transmittance was 96.1%. The sheet resistance was 2.848X104 Ohm/sq.
1.Kim, A.K.G.a.P., Carbon Wonderland. Scientific American 2008. 298: p. 90-97.
2.Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
3.Alexander A. Balandin, S.G., Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008. 8(3): p. 902-907
4.Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
5.Berger, C., et al., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
6.Anton, N.S., et al., Electrostatic deposition of graphene. Nanotechnology, 2007. 18(13): p. 135301.
7.Hirata, M., et al., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon, 2004. 42(14): p. 2929-2937.
8.Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155-158.
9.Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008. 3(2): p. 101-105.
10.Brodie, B.C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 1859. 149(ArticleType: research-article / Full publication date: 1859 /): p. 249-259.
11.Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
12.Xu, Y., et al., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008. 130(18): p. 5856-5857.
13.He, H., et al., A new structural model for graphite oxide. Chemical Physics Letters, 1998. 287(1–2): p. 53-56.
14.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-1024.
15.Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
16.Yang, X., et al., Two-Dimensional Graphene Nanoribbons. Journal of the American Chemical Society, 2008. 130(13): p. 4216-4217.
17.Cecilia Mattevi, a.H.K.a.M.C.a., A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21: p. 3324-3334.
18.Kim KS, Z.Y., Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
19.Kwon, S.-Y., et al., Growth of Semiconducting Graphene on Palladium. nano letters, 2009. 9(12): p. 3985-3990.
20.Sutter, P.W., J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nat Mater, 2008. 7(5): p. 406-411.
21.Coraux, J., et al., Structural Coherency of Graphene on Ir(111). nano letters, 2008. 8(2): p. 565-570.
22.Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
23.Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10): p. 2017-2021.
24.Yi Zhang, et al., Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition. The Journal of Physical Chemistry Letters 2010 1(20): p. 3101-3107
25.Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103-3.
26.Srivastava, A., et al., Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials, 2010. 22(11): p. 3457-3461.
27.Levendorf, M.P., et al., Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. nano letters, 2009. 9(12): p. 4479-4483.
28.Cai, W., et al., Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 2009. 95(12): p. 123115-3.
29.Lee, Y., et al., Wafer-Scale Synthesis and Transfer of Graphene Films. nano letters, 2010. 10(2): p. 490-493.
30.Lee, Y.-H. and J.-H. Lee, Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO[sub 2]/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 2010. 96(8): p. 083101-3.
31.Ismach, A., et al., Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. nano letters, 2010. 10(5): p. 1542-1548.
32.Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 2010. 5(8): p. 574-578.
33.Li, X., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. nano letters, 2009. 9(12): p. 4268-4272.
34.Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. nano letters, 2008. 9(1): p. 30-35.
35.Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
36.Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
37.Gao, L., et al., Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters, 2010. 97(18): p. 183109-3.
38.Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
39.Chen, J.-H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano, 2008. 3(4): p. 206-209.
校內:2012-12-31公開