| 研究生: |
陳重宇 Chen, Chung-Yu |
|---|---|
| 論文名稱: |
考慮表面力效應反平面剪力模數等效係數 Effective Antiplane Shear Modulus of Composites with Surface Stress |
| 指導教授: |
陳東陽
Chen, Tungyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 表面/界面應力 、反平面等效剪力模數 、廣義自洽法 、纖維複合材料 |
| 外文關鍵詞: | Interface/surface stress, Effective shear modulus, Generalized self-consistent method, Nano composite material |
| 相關次數: | 點閱:186 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,許多技術關注在微小產品的製成,考慮微小尺度下材料的特性,當物體尺寸逐漸縮小時,表面積對體積的比率逐漸增大,此時界面/表面應力對物體之力學行為有相當大的影響,因此不可忽略考慮。本文將以基本纖維複合材料問題為架構,考慮表面應力,引入界面條件,重新探討複合材料之反平面等效剪力模數。利用複變函數定義場量分析,選用幾何形狀較為廣義的橢圓形,透過廣義自洽法建立雙層共焦橢圓形模型,並藉由保角映射技巧和平均值定理求解代表整體材料之元素彈力特性,分析複合材料在奈米尺度下,尺寸、形狀、面積比和嵌入纖維強度對表面力的影響,透過等效剪力模數來觀察表面力在小尺度下的應力行為。
This study investigates the problem of nano composites with surface stress under antiplane shear deformation. The ratio of surface area to volume increases when the size of medium shrinks, thus the mechanical behavior of the medium will be greatly affected by the interface imperfection. Therefore, the interface/surface stress is not negligible for nano scale solids. The model we discuss is the basic fibrous composite. The cross section is a confocal elliptic subjected to an antiplane shear loading on the matrix in far field. The effective antiplane shear modulus is obtained through generalized self-consistent method. The boundary condition particularly leads into the interface condition that is traction force of discontinuous. The elastic field is defined by potential function, by applying the conformal mapping technique and average theorem to solve the effective antiplane shear modulus. Finally, we demonstrate numerical results to discuss the influences of size, shape, concentration factor and shear modulus of fiber inclusion on effective behavior. The results confirm that the surface effect is significant when the size scale approach to the order of nanometer.
Books, H., Metal Surface, American Society for Metals, pp.30-31, (1952).
Barenblatt, G. I., & Cherepanov, G. P., On brittle cracks under longitudinal shear. Journal of Applied Mathematics and Mechanics, 25(6), pp.1654-1666, (1961).
Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54(4), pp.708-734, (2006).
Benveniste, Y., & Milton, G. W., The effective medium and the average field approximations vis-a-vis the Hashin–Shtrikman bounds. I. The self-consistent scheme in matrix-based composites. Journal of the Mechanics and Physics of Solids, 58(7), pp.1026-1038, (2010).
Cammarata, R.C., Surface and interface stress effects in thin films. Progress in surface science, 46, pp.1-38, (1994).
Christensen, R.M., Mechanics of Composite Materials. John Wiley & Sons, USA, pp.74-85, (1979).
Chen, T., Benveniste, Y., & Chuang, P. C., Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 458, No. 2023, pp. 1719-1759, (2002).
Chen, T., Chiu, M.S., Weng, C.N., Derivation of the generalized Young-Laplace equation of curved interface in nanoscaled solids. Journal of Applied Physics, 100, 074308, (2006).
Chen, T., Chiu, M.S., Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mechanics of Materials, 43, pp.212-221, (2011).
Chen, T., Chiu, M.S., A mathematical framework of high-order surface stresses in three-dimensional configurations. Acta Mechanica, 225, pp.1043-1060, (2014).
Chen, T., Dvorak, G. J., & Yu, C. C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 188(1-2), pp.39-54, (2007a).
Chen, T., Dvorak, G. J., & Yu, C. C., Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections. International Journal of Solids and Structures, 44(3),pp.941-955, (2007b).
Chen, T., Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3-4), pp.205-217, (2008).
Chen, T., A universal expression for bounds on the torsional rigidity of cylindrical shafts containing fibers with arbitrary transverse cross-sections. Journal of Elasticity, 101(1), 1-27, (2010).
Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 69, 165410, (2004).
Dong, X. N., Zhang, X., Huang, Y. Y., & Guo, X. E., A generalized self-consistent estimate for the effective elastic moduli of fiber-reinforced composite materials with multiple transversely isotropic inclusions. International Journal of Mechanical Sciences, 47(6), pp.922-940, (2005).
Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids 53, pp.1574-1596, (2005a).
Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L., Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences. Vol. 461. No. 2062. The Royal Society, (2005b).
England, A.H., Complex Variable Methods in Elasticity. Wiley-interscience, London, (1971).
Finn, R., Equilibrium capillary surfaces. Springer-Verlag, New York Inc, (1986).
Gibbs, J. W., The collected works of J. Willard Gibbs, Vol. 1, Longmans, New York, pp.315, (1928).
Gurtin, M.E., Murdoch, A.I., A continuum theory of elastic material surfaces. A continuum theory of elastic material surfaces. 57, pp.291-323, (1975).
Gurtin, M.E., Murdoch, A.I., Surface stress in solids. International Journal of Solids and Structures, 14, pp.431-440, (1978).
Gurtin, M.E., Weissmüller, J., Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 78, pp.1093-1109, (1998).
Huang, Y., Hu, K. X., & Chandra, A., A generalized self-consistent mechanics method for microcracked solids. Journal of the Mechanics and Physics of Solids, 42(8), pp.1273-1291, (1994).
Haftbaradaran, H., & Shodja, H. M., Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. International Journal of Solids and Structures, 46(16), pp.2978-2987, (2009).
Jammes, M., Mogilevskaya, S. G., & Crouch, S. L. Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Engineering Analysis with Boundary Elements, 33(2), pp.233-248, (2009).
J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids, John Wiley & Sons, (2006).
Jiang, C. P., & Cheung, Y. K., An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. International Journal of Solids and Structures, 38(28), pp.4777-4796, (2001a).
Jiang, C. P., Tong, Z. H., & Cheung, Y. K., A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials, 33(5), pp.295-308, (2001b).
Jiang, C. P., Tong, Z. H., & Cheung, Y. K., A generalized self-consistent method accounting for fiber section shape. International Journal of Solids and structures, 40(10), pp.2589-2609, (2003).
Laplace, P. S., Traite de mechanique celeste, vol. 4.Gauthier-Villars, Paris, (1805).
Li, P.J., Wang, Q.Z., & Shi, S.F., Differential scheme for the effective elastic properties of nano-particle composites with interface effect. Computational Materials Science, 50(11), pp.3230-3237, (2011).
Luo, J., & Wang, X., On the anti-plane shear of an elliptic nano inhomogeneity. European Journal of Mechanics-A/Solids, 28(5), pp.926-934, (2009).
Miller, R.E., Shenoy, V.B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 11, pp.139-147, (2000).
Mogilevskaya, S. G., Crouch, S. L., Stolarski, H. K., & Benusiglio, Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. International Journal of Solids and Structures, 47(3), pp.407-418, (2010)..
Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity. P. Noodhoff Ltd, Grogingen, the Netherlands, (1963).
Nix, W.D., Gao, H., An atomistic interpretation of interface stress. Scripta Materialia, 39, pp.1653-1661, (1998).
Ou, Z. Y., Wang, G. F., & Wang, T. J., Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. European Journal of Mechanics-A/Solids, 28(1), pp.110-120, (2009).
Pellicer, J., Garcia-Morales, V., & Hernández, M. J., On the demonstration of the Young-Laplace equation in introductory physics courses. Physics Education, 35(2), pp.126-129, (2000).
Pensée, V., & He, Q. C., Generalized self-consistent estimation of the apparent isotropic elastic moduli and minimum representative volume element size of heterogeneous media. International journal of solids and structures, 44(7), pp.2225-2243, (2007).
Povstenko, Y. Z., Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 41(9), pp.1499-1514, (1993).
Saada, Adel S., Elasticity theory and Applications, Pergamon Press, New Tork, pp.125-129, (1993).
Shuttleworth, R., The surface tension of solids. Proceedings of the Physical Society. Section A, 63, pp.444-457, (1950).
Sharma, P., Ganti, S., Bhate, N., Effect of`surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, pp.535-537, (2003).
Sharma, P., and S. Ganti. Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. Journal of Applied Mechanics. 71, 663-671, (2004).
Sharma, P., & Wheeler, L. T., Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/ Interface Tension. Journal of Applied Mechanics, 74(3), pp.447-454, (2007).
Stagni, L., Effective transverse elastic moduli of a composite reinforced with multilayered hollow-cored fibers. Composites science and technology, 61(12), pp.1729-1734, (2001).
Tai, C. T., Generalized Vector and Dyadic Analysis, IEEE Press, New York, (1992).
Ting, T. C. Anisotropic Elasticity: Theory and Applications, Oxford University Press, USA, (1996).
Tian, L., & Rajapakse, R. K. N. D., Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 44(24), pp.7988-8005, (2007).
Wang, G. F., & Wang, T. J., Deformation around a nanosized elliptical hole with surface effect. Applied Physics Letters, 89(16), 161901, (2006).
Wang, Y., & Qin, Q. H., A generalized self consistent model for effective elastic moduli of human dentine. Composites science and technology, 67(7), pp.1553-1560, (2007).
Wong, E. W., Sheehan, P. E., & Lieber, C. M., Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science, 277(5334), pp.1971-1975, (1997).
Xiao, J. H., Xu, Y. L., & Zhang, F. C., Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta mechanica, 222(1-2), pp.59-67, (2011).
Xiao, J., Xu, Y., & Zhang, F., A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mechanics of Materials, 81, pp.94-100, (2015).
Young, T., An essay on the cohesion of fluid. Philosophical Transactions of the Royal Society of London, 95, pp.65-87, (1805).
Yang, F., Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. Journal of Applied Physics, 95, pp.3516-3520, (2004).
余健忠,表面力對複合材料等效係數的影響,國立成功大學土木工程研究所碩士論文,(2005)。
邱明聖,固體介面效應之探討,國立成功大學土木工程研究所碩士論文,,(2006)。
邱明聖,高階表面力於奈米尺度材料或結構的一些力學課題,國立成功大學土木工程研究所博士論文, (2013)。
柯嵋鐘,利用保角變換解析含孔洞或內含物的傳導問題,國立成功大學土木工程研究所碩士論文,(2001)。
許昆中,三維高階介面應力在結構力學基礎課題之探討,國立成功大學土木工程研究所博士論文,(2012)。
鄭之浩,考慮高階表面力於奈米尺度平板之挫曲與共振頻率,國立成功大學土木工程研究所博士論文,(2014)。
校內:2020-09-04公開