簡易檢索 / 詳目顯示

研究生: 鍾明芬
Chung, Min-Fen
論文名稱: 虛擬實境籃球戰術訓練系統
Basketball Tactic Training via Virtual Reality
指導教授: 胡敏君
Hu, Min-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 28
中文關鍵詞: 籃球戰術訓練虛擬實境籃球軌跡相似度
外文關鍵詞: Basketball Tactic Training, Virtual Reality, Basketball, Similarity of Trajectory
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出了一套結合了多媒體和虛擬實境技術的籃球戰術訓練系統,藉以提高戰術學習的有效性和球員在戰術訓練上的經驗。我們開發了一套在平板電腦上運行的電子戰術板應用程式來進行錄製、檢索以及選擇進攻的戰術,然後將所選戰術的球員移動軌跡與球的傳導資訊轉換至3D系統中,以虛擬實境的方式呈現出戰術訓練的環境,提供給使用者做體驗與練習戰術。在虛擬實境中,使用者可以透過以第一人稱或第三人稱視角來觀看戰術,同時會根據使用者的頭部轉向資訊,提供正確的頭部轉向提示與路徑提示,並可以自動生成防守者以提高戰術訓練的擬真度。我們也設計了一套實驗流程來驗證我們提出的系統,不僅讓使用者覺得像在真正的球場上進行戰術訓練,且能有效提升學習新戰術的效率。

    In this paper, we present a basketball tactic training system based on multimedia and virtual reality (VR) technologies to improve the effectiveness and experience of tactic learning. A tablet-based digital tactic board (2D BTB) is developed to draw, select, or search for a target offensive tactic. The 2D player trajectories of the target tactic are then converted into 3D player animation immediately to provide virtual reality content for experiencing and practicing the target basketball tactic. Through the VR environment, the learner can vividly experience how a tactic is executed in a global view or from a specific player's viewing direction. The basketball tactic movement guidance and virtual defenders are rendered in our VR system according to the target offensive tactic and the learner's head pose. We also design an experimental process to validate that the proposed VR training system not only makes the learner feel more like playing in a real basketball game but also improves the efficiency and effectiveness of learning new basketball tactics.

    摘要 . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . iv Chapter 1. Introduction . . . . . . . . . . . . . . 1 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Related Work . . . . . . . . . . . . . . 3 Chapter 3. Pre-study . . . . . . . . . . . . . . 5 . Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 4. Proposed System . . . . . . . . . . . . . . 7 . Electronic Basketball Tactic Board . . . . . . . . . . . . . . . . . . . . 7 . Display Basketball Tactic through Virtual Reality . . . . . . . . . . . . . 7 . Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . Learning Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . Defender Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 5. System Implementation . . . . . . . . . . . . . . 11 . Electronic Basketball Tactic Board . . . . . . . . . . . . . . . . . . . . 11 . . Class design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . . Function implementation . . . . . . . . . . . . . . . . . . . . . . 12 . Display Basketball Tactic in Virtual Reality . . . . . . . . . . . . . . . . 15 . Ball’s behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . Player’s animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . Defender’s behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . System design of learning mode . . . . . . . . . . . . . . . . . . . . . . 18 . . Generate hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 6. Experiment . . . . . . . . . . . . . . 19 . Environment Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 . Experiment Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . Experiment and result . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . Quantitative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . Qualitative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 7. Conclusion and Future Works . . . . . . . . . . . . . . 26 . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 . Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . 27

    [1] Ibm spss analysis, 2017.
    [2] Ferran Argelaguet Sanz, Franck Multon, and Anatole Lécuyer. A methodology for introducing competitive anxiety and pressure in vr sports training. Frontiers in Robotics and AI, 2:10, 2015.
    [3] Benoit Bideau, Richard Kulpa, Nicolas Vignais, Sébastien Brault, Franck Multon, and Cathy Craig. Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications, 30(2):14–21, 2010.
    [4] J Martin Bland and Douglas G Altman. Statistics notes: Cronbach’s alpha. Bmj, 314(7080):572, 1997.
    [5] Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving object trajectories. In Int’l Conference on Management of Data, pages 491– 502. ACM, 2005.
    [6] Alexandra Covaci, Anne-Hélène Olivier, and Franck Multon. Visual perspective and feedback guidance for vr free-throw training. IEEE computer graphics and applica- tions, 35(5):55–65, 2015.
    [7] Fred D Davis. User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies, 38(3):475–487, 1993.
    [8] Alexander Franks, Andrew Miller, Luke Bornn, Kirk Goldsberry, et al. Characterizing the spatial structure of defensive skill in professional basketball. The Annals of Applied Statistics, 9(1):94–121, 2015.
    [9] Yazhou Huang, Lloyd Churches, and Brendan Reilly. A case study on virtual reality american football training. In Proceedings of the 2015 Virtual Reality International Conference, page 6. ACM, 2015.
    [10] David Klemish, Benjamin Ramger, Kelly Vittetoe, Jerome P Reiter, Surya T Tokdar, and Lawrence Gregory Appelbaum. Visual abilities distinguish pitchers from hitters in professional baseball. Journal of Sports Sciences, pages 1–9, 2017.
    [11] Richard Kulpa, Benoît Bideau, and Sebastien Brault. Displacements in virtual reality for sports performance analysis. In Human walking in virtual environments, pages 299– 318. Springer, 2013.
    [12] StriVR Labs. Strivr | immersive training solutions. (n.d.)., 2016.
    [13] Hoang M Le, Peter Carr, Yisong Yue, and Patrick Lucey. Data-driven ghosting using deep imitation learning. 2017.
    [14] Pierre-François Marteau. Time warp edit distance with stiffness adjustment for time series matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):306–318, 2009.
    [15] Helen C Miles, Serban R Pop, Simon J Watt, Gavin P Lawrence, and Nigel W John. A review of virtual environments for training in ball sports. Computers & Graphics, 36(6):714–726, 2012.
    [16] EON Sports. Eon sports vr. (n.d.)., 2016.
    [17] Cheryl Stinson and Doug A Bowman. Feasibility of training athletes for high-pressure situations using virtual reality. IEEE transactions on visualization and computer graph- ics, 20(4):606–615, 2014.
    [18] MathiasWellner,RolandSigrist,andRobertRiener.Virtualcompetitorsinfluencerow- ers. Presence: Teleoperators and Virtual Environments, 19(4):313–330, 2010.
    [19] MathiasWellner,RolandSigrist,JoachimvonZitzewitz,PeterWolf,andRobertRiener. Does a virtual audience influence rowing? Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224(1):117–128, 2010.
    [20] Albert R Wildt and Olli Ahtola. Analysis of covariance, volume 12. Sage, 1978.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE