簡易檢索 / 詳目顯示

研究生: 蔡婉萍
Tsai, Wan-Ping
論文名稱: 在車用網路下利用緩衝區動態消漲感知之車隊協力式可調式視訊編碼串流
A Buffer-aware Fleet-based Cooperative H.264/SVC Video Streaming over Vehicular Networks
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 合作式影片串流(Cooperative Streaming)車載網路(Vehicular Network)車間專用短程通信技術(Dedicated Sort-Range Communication, DSRC)H.264可調式視訊編碼(SVC)
外文關鍵詞: Cooperative Streaming, Vehicular Network, Dedicated Short-Range Communication (DSRC), H.264, Scalable Video Coding (SVC)
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著車載網路的迅速發展,3G/3.5G以及車間專用短程通信技術(DSRC)實現了針對車載網路的新型態網路服務。考慮在車載網路中進行多媒體影片串流,單一行進車輛中的使用者利用其3G/3.5G網路可能無法擁有足夠支援高品質影片串流的頻寬。針對以上的考慮,本篇論文的動機為研究如何在以車隊為基礎的車載網路環境中進行合作式的影片串流。在車隊中,當一輛車需要經過3G/3.5G網路連上Internet要求影片串流,這台車輛可以同時藉由鄰近的其他車隊成員們下載所需要的影片串流。接著,這些鄰近的車隊成員們可以利用車間專用短程通信技術將所下載的資料傳送給需要影片串流的這台車輛。在本篇論文中提出了兩個鄰近幫載成員選擇法(helper selection algorithms)在許多車隊成員中挑選適合的成員幫忙下載影片串流。當決定幫載成員(helper)後,利用所設計的兩個影片片段分配法(video assignment algorithms)將不同的影片片段排程到不同的幫載成員上。此外,為了區分隨著時間而持續由3G/3.5G以及DSRC兩段無線網路所造成的影響,一個緩衝區動態消脹感知排程技術被設計來根據影片需求者的緩衝區影片撥放長度在車載網路下的動態變化,調整串流的排程而滿足影片需求者的服務品質(QoS)。為了模擬車載網路中以車隊為基礎的合作式H.264/SVC可調式視訊串流,在NS-2的模擬環境中我們設計了一個在高速公路上車隊的移動模式,並且利用H.264/SVC作為影片編解碼技術。模擬的結果顯示在隨著不同的高速公路的交通情況以及隨時間改變的DSRC以及3G/3.5G網路環境中,影片片段分配法能夠區分不同的影片片段的優先順序以及重要性。在這裡所提出的影片片段分配法可以在不同的交通狀況以及網路狀況中保護較重要的H.264/SVC影片加強層,進而改善整體影片的品質。另外,緩衝區動態消脹感知的作法可以透過動態調整所要求的影片加強層以及幫載節點的集合,進而對網路的變化進行即時的反應。根據實驗結果,透過整合適當的影片片段分配法以及緩衝區動態消脹感知排程技術,可以在車載網路中提升影片品質。

    The rapid development of vehicular communications, e.g., 3G/3.5G and Dedicated Short Range Communication (DSRC), realizes new types of network services for automotive use. Regarding multimedia streaming services, a vehicle may not have enough bandwidth to receive good quality of video using 3G/3.5G network. Hence, the motivation of this thesis is to investigate the fleet-based cooperative streaming scenario over the vehicular environment. When a vehicle requests a video stream from the Internet using 3G/3.5G network, it asks neighboring members belonging to the same fleet to download the requested video data simultaneously. Then, neighboring members forward video data to the requesting vehicle for quality improvement using DSRC network. In this thesis, two helper selection algorithms are proposed to select helpers among several members that belong to the same fleet. After determining helper candidates, two video assignment algorithms are designed to schedule each helper to download parts of video data. Besides, the differentiation between these two wireless networks, i.e., 3G/3.5G and DSRC, are varying with time. A buffer-aware scheduling mechanism is proposed to satisfy the requester’s QoS based on the requester’s buffer status over the dynamic variation of vehicular networks. In order to simulate the fleet-based cooperative H.264/SVC streaming over vehicular network, we designed the mobility pattern of a fleet on the highway in the NS-2 simulation environment, and adopted the H.264/SVC as the video coding technique. With different highway traffic conditions and the varying network conditions of DSRC and 3G/3.5G network, the video assignment algorithm takes the priority and importance of different enhancement layer into consideration. The proposed assignment can improve the video quality over different traffic and network conditions by protecting more important layers. Furthermore, the buffer-aware scheduling mechanism provides instantaneous reaction to the change of the network condition by adjusting the video quality and the helper set dynamically. Thus, from the experiment results, with the integration of the appropriate video assignment algorithm and the buffer-aware scheduling mechanism, video quality can be improved in the vehicular network condition.

    Chapter 1 Introduction 1 Chapter 2 Related Works 5 2.1 Neighbor Discovery over Vehicular Ad-hoc Networks 5 2.2 H.264/SVC Video Streaming 6 2.3 Buffer-aware Multimedia Streaming 7 2.4 Layered Video Scheduling 8 2.5 Cooperative Network Integrating WWAN and WLAN 9 Chapter 3 Buffer-aware Scheduling Mechanism for Layered Streaming 10 3.1 Network Differentiation and Coordination 10 3.2 Buffer-aware Scheduling Mechanism 12 Chapter 4 Fleet-based Cooperative Streaming over Vehicle Networks (FCS-VN) 17 4.1 System Architecture 17 4.2 Helper Selection Algorithms 19 4.3 Video Assignment Algorithms 21 Chapter 5 Simulation Environment and Results 26 Chapter 6 Conclusion and Future Works 56 Bibliography 58

    [1] J. Luo and D. Guo, “Neighbor Discovery in Wireless Ad Hoc Networks based on Group Testing,” Proceedings of 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 791–797, Sep. 2008.
    [2] H.-W. Tsai, C. Chen, C.-C. Shen, R.-H. Jan, and H.-H. Li, “Maintaining Cohesive Fleets via Swarming with Small-World Communications,” Proceedings of IEEE Vehicular Networking Conference (VNC), pp. 1–8, Oct. 2009.
    [3] R. Khalili, D. L. Goeckel, D. Towsley, and A. Swami, “Neighbor Discovery with Reception Status Feedback to Transmitters,” Proceedings of the 29th IEEE Conference on Computer Communications (INFOCOM), pp. 2375–2383, Mar. 2010.
    [4] T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, “A Stable Routing Protocol to Support ITS Services in VANET Networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3337–3347, Nov. 2007.
    [5] T. Okamura, T. Ideguchi, X. Tian, and T. Okuda, “Traffic Evaluation of Group Communication Mechanism among Vehicles,” Proceedings of the 4th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), pp. 223–226, Nov. 2009.
    [6] R. Zoican and D. Galatchi, “Analysis and simulation of a Predictable Routing Protocol for VANETs,” Proceedings of the 9th International Symposium on Electronics and Telecommunications (ISETC), pp. 153–156, Nov. 2010.
    [7] H. Schwarz, D. Marpe and T. Wiegand, “Overview of the Scalable Video Coding Extension of the H.264/AVC Standard”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.1102-1120, 2007.
    [8] I. Amonou, N. Cammas, S. Kervadec, S. Pateux , "Optimized Rate-Distortion Extraction With Quality Layers in the Scalable Extension of H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology, vol.17, no.9, pp.1186-1193, 2007.
    [9] G. Bianchi, A. Detti, P. Loreti, C. Pisa, S. Thakolsri, W. Kellerer, J. Widmer, "Cross-layer H.264 scalable video downstream delivery over WLANs," IEEE International Symposium on World of Wireless Mobile and Multimedia Networks (WoWMoM), pp.1-9, 2010.
    [10] N. Qadri, M. Altaf, M. Fleury, M. Ghanbari, and H. Sammak, “Robust Video Streaming over an Urban VANET,” Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WIMOB), pp. 429–434, Sep. 2009.
    [11] J. Nightingale, W. Qi, C. Grecos, "Optimised transmission of H.264 scalable video streams over multiple paths in mobile networks," IEEE Transactions on Consumer Electronics, vol.56, no.4, pp.2161-2169, 2010.
    [12] E. Maani, A.K. Katsaggelos, "Unequal Error Protection for Robust Streaming of Scalable Video Over Packet Lossy Networks," IEEE Transactions on Circuits and Systems for Video Technology , vol.20, no.3, pp.407-416, 2010.
    [13] C.-M. Huang and C.-H. Lee, “Layer 7 Multimedia Proxy Handoff Using Anycast/Multicast in Mobile Networks,” IEEE Transcation on Mobile Computing, vol. 6, no. 4, pp. 411–422, Apr. 2007.
    [14] M. Li, M. Claypool, and R. Kinicki, “Playout Buffer and Rate Optimization for Streaming over IEEE 802.11 Wireless Networks,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 5, no. 3, pp. 1–25, Aug. 2009.
    [15] S.-B. Lee, A. Smeaton, and G.-M. Muntean, “A Novel Buffer Underflow Avoidance Scheme for Multiple-source High Quality Multimedia Delivery,” IEEE Communications Letters, vol. 14, no. 6, pp. 590–592, Jun. 2010.
    [16] L. Xu and J. Helzer, “Media streaming via TFRC: An analytical study of the impact of TFRC on user-perceived media quality,” Computer Network, vol. 51, no. 17, pp. 4744–4764, 2007.
    [17] P. Y. Ho and J. Y. B. Lee, “Predictive buffering for multi-source video streaming over the internet,” Proceedings of IEEE Global Telecommunications Conference, pp.1-6, 2006.
    [18] P. Sharma, S. Lee, J. Brassil, and K.G. Shin, “Handheld Routers: Intelligent Bandwidth Aggregation for Mobile Collaborative Communities,” Proceedings of the First International Conference on Broadband Networks, pp. 537-547, 2004.
    [19] V. Agarwal and R. Rejaie, “Adaptive Multi-source Streaming in Heterogeneous Peer-to-Peer Networks,” SPIE Conference on Multimedia Computing and Networking, pp. 13-25, January 2005.
    [20] K. Chebrolu and R. Rao, “Bandwidth aggregation for real-time applications in heterogeneous wireless networks,” IEEE Transaction on Mobile Computing, Vol. 5, No. 4, pp. 388–403, Apr. 2006.
    [21] D. Fan, V. Le, Z. Feng, Z. Hu, and X. Wang, “Adaptive Joint Session Scheduling for Multimedia Services in Heterogeneous Wireless Networks,” Proceedings of IEEE 70th Vehicular Technology Conference (VTC), pp. 1–5, Sep. 2009.
    [22] P. Pahalawatta, R. Berry, T. Pappas, A. Katsaggelos, "Content-Aware Resource Allocation and Packet Scheduling for Video Transmission over Wireless Networks," IEEE Journal on Selected Areas in Communications, vol.25, no.4, pp.749-759, 2007.
    [23] H. El-Sayed, A. Mellouk, L. George, and S. Zeadally, "Quality of service models for heterogeneous networks: overview and challenges, " Annals of Telecommunications, vol. 63, no. 11, pp. 639-668, 2008.
    [24] G. Ananthanarayanan, V. Padmanabhan, C. Thekkath, and L. Ravindranath, “Collaborative Downloading for Multi-homed Wireless Devices,” Proceedings of 8th IEEE Workshop on Mobile Computing Systems and Applications (HotMobile), pp. 79–84, Mar. 2007.
    [25] M.-F. Leung and S.-H. G. Chan, “Broadcast-Based Peer-to-Peer Collaborative Video Streaming Among Mobiles,” IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 350–361, Mar. 2007.
    [26] S.Y. Wang, C.L. Chou, C.C. Lin, “Increasing wide-area download throughputs on the roads by trunking multiple cellular channels over a vehicular ad hoc network”, Computer Communications, vol. 32, no. 2, 2009, pp. 268-280, 2009.
    [27] A. Sharma, V. Navda, R. Ramjee, V.N. Padmanabhan, and E.M. Belding, “Cool-Tether: energy efficient on-the-fly wifi hot-spots using mobile phones,”. In Proceedings of the 5th international conference on Emerging networking experiments and technologies (CoNEXT '09) ACM, pp.109-120, 2009.
    [28] S. Hua, Y. Guo, Y. Liu, H. Liu, S.S. Panwar, "Scalable Video Multicast in Hybrid 3G/Ad-Hoc Networks," IEEE Transactions on Multimedia, vol.13, no.2, pp.402-413, 2011.
    [29] Y. Hong, L. Shen, B. Xu, "Experimental System for Integration of Ad-Hoc and Cellular Network," International Conference on Wireless Communications, Networking and Mobile Computing, pp.1-4, 2009.
    [30] T.T. Do, K.A. Hua, A. Aved, F. Liu, N. Jiang, "Scalable Video-On-Demand Streaming in Mobile Wireless Hybrid Networks," IEEE International Conference on Communications (ICC '09), pp.1-6, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE