簡易檢索 / 詳目顯示

研究生: 王鼎中
Wang, Ting-Chung
論文名稱: 一維氧化鋅奈米柱陣列於固態太陽能電池之應用
Application of one-dimensional ZnO nanorod array to solid-state solar cells
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 183
中文關鍵詞: 氧化鋅奈米柱室溫化學浴處理金屬表面電漿共振有機/無機混成太陽能電池鈣鈦礦太陽能電池
外文關鍵詞: ZnO Nanorod, Room-Temperature Chemical Bath Deposition, Surface Plasmonic Effect, Organic/Inorganic Hybrid Solar Cells
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討於反轉式P3HT:PCBM/氧化鋅奈米柱陣列異質接面太陽能電池中,加入金屬@絕緣層奈米粒子之效應。本研究以化學浴沉積法成長單晶氧化鋅奈米柱陣列(ZnO nanorod array)作為電子受體,提供電子一直接傳導路徑,再利用旋轉塗佈法將聚(3-己基噻吩) [poly(3-hexylthiophene-2,5-diyl), P3HT]以及富勒烯衍生物[(6,6)-phenyl-C61-butyric acid methyl ester, PC61BM]填入氧化鋅奈米柱陣列中,作為主動層材料。結果顯示,加入金屬@絕緣層奈米粒子可有效增加短路電流密度(short-circuit current density)以及改善填充因子(Fill Factor)。其中,以混摻Au@Silica奈米粒子於主動層材料中之太陽能電池有最佳結果,光電轉換效率可有60%的增益,由1.18%提升至1.91%。本研究並分別利用電化學交流阻抗分析(Electrochemical impedance spectroscopic, EIS)、光強度調制光電流分析儀(Intensity modulated photocurrent spectroscopy, IMPS)與時間解析光激螢光光譜(Time-solved photoluminescence, TRPL)分析太陽能電池之載子再結合、電子傳輸與激子(exciton)於太陽能電池中的行為。
    此外,本研究亦使用甲基胺鉛碘取代P3HT:PCBM作為吸光材料,以吸收波長範圍300-800 nm之可見光。以一步驟合成法以及連續式合成法兩種方法將甲基胺鉛碘填入單晶氧化鋅奈米柱陣列中,以組裝鈣鈦礦/氧化鋅奈米柱陣列太陽能電池,其中以連續式合成法具有較高效能,可達Voc~0.86, Jsc~15.20 mA/cm2,FF~0.50,效率為6.50%。

    In this work, in order to enhance the performance of ZnO nanorod (NR)/P3HT:PCBM solar cells, core-shell metal@insulator nanoparticles (NPs) were incorporated into the active layer of P3HT:PCBM. The addition of metal@insulator NPs to ZnONR/P3HT:PCBM hybrid solar cell resulted in the improvements of short circuit current density and fill factor of the hybrid solar cells. A 60% enhancement of the overall power conversion efficiency are achieved in the hybrid solar cell with the addition of Au@Silica NPs.

    摘要 II 謝誌 VII 目錄 IX 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池2 1-3 研究動機 7 第二章 文獻回顧 9 2-1 太陽能電池 9 2-1-1 太陽能電池工作原理 9 2-1-2 太陽能電池特性與太陽光頻譜照度 9 2-1-3 太陽能電池等效電路 11 2-1-3-1 理想太陽能電池等效電路 11 2-1-3-2實際太陽能電池等效電路 13 2-2 塊材異質接面太陽能電池 19 2-2-1 塊材異質接面太陽能電池簡介 19 2-2-2 塊材異質接面太陽能電池運作原理 21 2-2-3 塊材異質接面太陽能電池發展 30 2-2-3-1雙層異質接面結構 31 2-2-3-2有機塊材異質接面結構 32 2-2-3-3有機無機混成塊材異質接面結構 38 2-2-3-4多孔性異質接面結構 43 2-2-3-4規則性異質接面結構 44 2-3 表面電漿共振特性 47 2-3-1 表面電漿共振簡介 47 2-3-2 表面電漿共振理論 48 2-3-3 表面電漿共振應用於有機塊材異質接面太陽能電池 50 2-3-3-1表面電漿共振金屬於主動層中之應用 51 2-3-3-2表面電漿金屬於電洞傳輸層之應用 56 2-3-3-3表面電漿金屬於各層間界面 59 2-4 氧化鋅性質、結構與應用 60 2-4-1 複層式(hierarchical)氧化鋅奈米結構 61 2-4-2 一維氧化鋅奈米結構於反轉式有機/無機混成太陽能電池之應用. 70 2-4-3 P3HT:PCBM於一維奈米結構之反轉型有機無機混成太陽能電池之應用 80 2-5 鈣鈦礦太陽能電池 85 2-5-1 固態太陽能電池簡介 85 2-5-2 鈣鈦礦結構簡介 86 2-5-3 鈣鈦礦太陽能電池 89 2-5-3-1鈣鈦礦敏化太陽能電池 90 2-5-3-2多孔性鈣鈦礦太陽能電池 90 2-5-3-3一維金屬氧化物奈米柱鈣鈦礦太陽電池 93 2-5-3-4平面式鈣鈦礦太陽能電池 94 第三章 實驗步驟與研究方法 98 3-1 研究材料 98 3-1-1 成長氧化鋅奈米柱材料 98 3-1-2 組裝反轉式有機/無機混成太陽能電池之材料 98 3-1-3 合成鈣鈦礦材料 99 3-1-4 組裝鈣鈦礦/氧化鋅奈米柱陣列太陽能電池之材料 100 3-2 實驗流程 101 3-2-1 氧化鋅晶種層批覆 102 3-2-2 氧化鋅奈米柱陣列 102 3-2-3 室溫化學浴處理氧化鋅奈米柱陣列 102 3-2-4 合成金屬絕緣層奈米粒子 103 3-2-4-1合成Au@Silica奈米粒子 103 3-2-4-2合成Au@PSMA奈米粒子 103 3-2-4-3合成Ag@Silica奈米粒子 103 3-2-5 P3HT:PCBM/氧化鋅奈米柱陣列有機/無機混成太陽能電池組裝 104 3-2-6 合成甲基胺碘及甲基胺鉛碘鈣鈦礦材料 105 3-2-7 鈣鈦礦/氧化鋅奈米柱太陽能電池組裝 105 3-3 分析與鑑定 106 3-3-1 掃描式電子顯微鏡分析(SEM) 106 3-3-2 穿透式電子顯微鏡(TEM) 108 3-3-3 X光繞射分析(X-Ray Diffraction Analysis) 110 3-3-4 拉曼光譜分析(Raman Spectroscopy) 111 3-3-5 紫外光-可見光(UV-Vis.)吸收光譜 113 3-3-6 時間解析光激螢光光譜(TRPL) 114 3-3-7 太陽能電池效率量測 115 3-3-8 電化學交流阻抗分析(EIS) 115 3-3-9 光強度調制光譜分析(IMPS&IMVS) 117 第四章 表面電漿共振金屬絕緣奈米粒子於混成太陽能電池之應用 118 4-1 氧化鋅奈米柱陣列結構分析與P3HT:PCBM/氧化鋅奈米柱有機無機混成太陽能電池 118 4-1-1 氧化鋅奈米柱陣列結構分析與鑑定 118 4-1-2 P3HT:PCBM/氧化鋅奈米柱有機無機混成太陽能電池最佳化 121 4-1-2-1 P3HT與PCBM重量比對效率之影響 121 4-1-2-2 P3HT:PCBM厚度對效率之影響 122 4-1-2-3 P3HT濃度對效率之影響 124 4-1-2-4電池組裝方式對效率之影響 126 4-2 添加表面電漿金屬奈米粒子於氧化鋅奈米柱表面於有機/無機太陽能電池之研究 127 4-2-1 添加未包覆絕緣層金奈米粒子對太陽能電池效率之影響 128 4-2-1-1未包覆絕緣層金奈米粒子對太陽能電池之影響 130 4-2-2 金屬絕緣層核殼結構於太陽能電池之應用 132 4-2-2-1金屬絕緣層核殼結構對太陽能電池Jsc之影響 134 4-2-2-2金屬絕緣層核殼結構對載子傳輸及再結合現象之影響 141 4-3 添加金屬絕緣層奈米粒子於氧化鋅奈米柱表面於有機/無機太陽能電池之研究 146 4-3-1 絕緣層厚度對於短路光電流之影響 148 4-3-2 Au@Silica奈米粒子絕緣層厚度對載子傳輸及再結合現象之影響 153 4-4 結論 158 第五章 鈣鈦礦/氧化鋅奈米柱陣列太陽能電池 160 5-1 一步驟合成鈣鈦礦/氧化鋅奈米柱陣列太陽能電池 160 5-2 連續式合成鈣鈦礦/氧化鋅奈米柱太陽能電池 164 5-3 結論 171 第六章 總結論 172 第七章 參考文獻 174

    (1) Gratzel, M. Powering the planet Nature 403, 1.2000.
    (2) Serrano, E.; Rus, G.; Garcia-Martinez, J. Nanotechnology for sustainable energy Renewable & Sustainable Energy Reviews 13, 2373-2384.2009.
    (3) Gratzel, M. Photoelectrochemical cells Nature 414, 338-344.2001.
    (4) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER Journal of Applied Physics 25, 676-677.1954.
    (5) Oregan, B.; Gratzel, M. A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS Nature 353, 737-740.1991.
    (6) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency Science 334, 1203-1203.2011.
    (7) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Graetzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers Nature Chemistry 6, 242-247.2014.
    (8) Minh Trung, D.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research Advanced Materials 23, 3597-3602.2011.
    (9) Su-Hwan, L.; Dal-Ho, K.; Ji-Heon, K.; Gon-Sub, L.; Jea-Gun, P. Effect of Metal-Reflection and Surface-Roughness Properties on Power-Conversion Efficiency for Polymer Photovoltaic Cells Journal of Physical Chemistry C 113, 21915-20.2009.
    (10) He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure Nature Photonics 6, 591-595.2012.
    (11) Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer Nature Photonics 6, 180-185.2012.
    (12) Xu, T.; Qiao, Q. Conjugated polymer-inorganic semiconductor hybrid solar cells Energy & Environmental Science 4, 2700-2720.2011.
    (13) Girtan, M.; Rusu, M. Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells Solar Energy Materials and Solar Cells 94, 446-450.2010.
    (14) Jorgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells Solar Energy Materials and Solar Cells 92, 686-714.2008.
    (15) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells Science 295, 2425-2427.2002.
    (16) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency Nano Letters 10, 239-242.2010.
    (17) Lin, Y.-Y.; Chu, T.-H.; Li, S.-S.; Chuang, C.-H.; Chang, C.-H.; Su, W.-F.; Chang, C.-P.; Chu, M.-W.; Chen, C.-W. Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells Journal of the American Chemical Society 131, 3644-3649.2009.
    (18) Oosterhout, S. D.; Wienk, M. M.; van Bavel, S. S.; Thiedmann, R.; Koster, L. J. A.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R. A. J. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells Nature Materials 8, 818-824.2009.
    (19) Service, R. F. Perovskite Solar Cells Keep On Surging Science 344, 458.2014.
    (20) Chen, D.-W.; Wang, T.-C.; Liao, W.-P.; Wu, J.-J. Synergistic Effect of Dual Interfacial Modifications with Room-Temperature-Grown Epitaxial ZnO and Adsorbed Indoline Dye for ZnO Nanorod Array/P3HT Hybrid Solar Cell ACS Applied Materials & Interfaces 5, 8359-8365.2013.
    (21) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Science 338, 643-647.2012.
    (22) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells Science 285, 692-698.1999.
    (23) Bisquert, J.; Cahen, D.; Hodes, G.; Ruhle, S.; Zaban, A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells Journal of Physical Chemistry B 108, 8106-8118.2004.
    (24) Shockley, W.; Queisser, H. J. DETAILED BALANCE LIMIT OF EFFICIENCY OF P-N JUNCTION SOLAR CELLS Journal of Applied Physics 32, 510.1961.
    (25) Deibel, C.; Dyakonov, V. Polymer-fullerene bulk heterojunction solar cells Reports on Progress in Physics 73.2010.
    (26) NREL Definiation of air mass and solar spectrum.
    (27) Rodrigues, E. M. G.; Melício, R.; Mendes, V. M. F.; Catalão, J. P. S. Simulation of a Solar Cell considering Single-Diode Equivalent Circuit Model Journal of Applied Physics 95, 2816-2819, 2004.
    .
    (28) Schilinsky, P.; Waldauf, C.; Hauch, J.; Brabec, C. J. Simulation of light intensity dependent current characteristics of polymer solar cells Journal of Applied Physics 95, 2816-2819.2004.
    (29) Kippelen, B.; Bredas, J.-L. Organic photovoltaics Energy & Environmental Science 2, 251-261.2009.
    (30) Schilinsky, P.; Waldauf, C.; Brabec, C. J. Performance analysis of printed bulk heterojunction solar cells Advanced Functional Materials 16, 1669-1672.2006.
    (31) Nelson, J. The Physics of Solar Cells Imperial College Press.2003.
    (32) Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L. Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency Advanced Materials 18, 789-794.2006.
    (33) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the Open Circuit Voltage of Plastic Solar Cells Advanced Functional Materials 11, 374-380.2001.
    (34) Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells Journal of Applied Physics 94, 6849-6854.2003.
    (35) Hau, S. K.; O'Malley, K. M.; Cheng, Y.-J.; Yip, H.-L.; Ma, H.; Jen, A. K. Y. Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells Ieee Journal of Selected Topics in Quantum Electronics 16, 1665-1675.2010.
    (36) Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research Advanced Materials 25, 6642-6671.2013.
    (37) Cowan, S. R.; Banerji, N.; Leong, W. L.; Heeger, A. J. Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells Advanced Functional Materials 22, 1116-1128.2012.
    (38) Pivrikas, A.; Neugebauer, H.; Sariciftci, N. S. Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells Ieee Journal of Selected Topics in Quantum Electronics 16, 1746-1758.2010.
    (39) Deibel, C.; Strobel, T.; Dyakonov, V. Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells Advanced Materials 22, 4097-4111.2010.
    (40) Scholes, G. D.; Rumbles, G. Excitons in nanoscale systems Nature Materials 5, 683-696.2006.
    (41) Köhler, A.; Beljonne, D. The Singlet–Triplet Exchange Energy in Conjugated Polymers Advanced Functional Materials 14, 11-18.2004.
    (42) Hertel, D.; Baessler, H. Photoconduction in amorphous organic solids Chemphyschem 9, 666-688.2008.
    (43) Menke, S. M.; Holmes, R. J. Exciton diffusion in organic photovoltaic cells Energy & Environmental Science 7, 499-512.2014.
    (44) Proctor, C. M.; Kuik, M.; Thuc-Quyen, N. Charge carrier recombination in organic solar cells Progress in Polymer Science 38, 1941-1960.2013.
    (45) Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H. J.; Brida, D.; Cerullo, G.; Lanzani, G. Hot exciton dissociation in polymer solar cells Nature Materials 12, 29-33.2013.
    (46) Boucle, J.; Ravirajan, P.; Nelson, J. Hybrid polymer-metal oxide thin films for photovoltaic applications Journal of Materials Chemistry 17, 3141-3153.2007.
    (47) Graham, K. R.; Erwin, P.; Nordlund, D.; Vandewal, K.; Li, R.; Ngongang Ndjawa, G. O.; Hoke, E. T.; Salleo, A.; Thompson, M. E.; McGehee, M. D.; Amassian, A. Re-evaluating the Role of Sterics and Electronic Coupling in Determining the Open-Circuit Voltage of Organic Solar Cells Advanced Materials 25, 6076-6082.2013.
    (48) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. POLYMER PHOTOVOLTAIC CELLS - ENHANCED EFFICIENCIES VIA A NETWORK OF INTERNAL DONOR-ACCEPTOR HETEROJUNCTIONS Science 270, 1789-1791.1995.
    (49) Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. 2.5% efficient organic plastic solar cells Applied Physics Letters 78, 841-843.2001.
    (50) Schilinsky, P.; Waldauf, C.; Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors Applied Physics Letters 81, 3885-3887.2002.
    (51) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells Advanced Functional Materials 13, 85-88.2003.
    (52) Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Polymer-Fullerene Bulk-Heterojunction Solar Cells Advanced Materials 22, 3839-3856.2010.
    (53) Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive Energy & Environmental Science 5, 7943-7949.2012.
    (54) Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100% Nature Photonics 3, 297-U5.2009.
    (55) Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells Journal of the American Chemical Society 130, 3619-3623.2008.
    (56) Goh, C.; Scully, S. R.; McGehee, M. D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells Journal of Applied Physics 101, -.2007.
    (57) Zhu, R.; Jiang, C.-Y.; Liu, B.; Ramakrishna, S. Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye Advanced Materials 21, 994-1000.2009.
    (58) Yu, J.; Shen, T.-L.; Weng, W.-H.; Huang, Y.-C.; Huang, C.-I.; Su, W.-F.; Rwei, S.-P.; Ho, K.-C.; Wang, L. Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells Advanced Energy Materials 2, 245-252.2012.
    (59) Liao, W.-P.; Hsu, S.-C.; Lin, W.-H.; Wu, J.-J. Hierarchical TiO2 Nanostructured Array/P3HT Hybrid Solar Cells with Interfacial Modification Journal of Physical Chemistry C 116, 15938-15945.2012.
    (60) Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array−P3HT Based Heterojunction Solar Cells Nano Letters 9, 4250-4257.2009.
    (61) Liao, W.-P.; Wu, J.-J. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array The Journal of Physical Chemistry Letters 4, 1983-1988.2013.
    (62) Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing Annual Review of Physical Chemistry 58, 267-297.2007.
    (63) Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications Chemical Reviews 107, 4797-4862.2007.
    (64) Stratakis, E.; Kymakis, E. Nanoparticle-based plasmonic organic photovoltaic devices Materials Today 16, 133-146.2013.
    (65) Mie, G. Contributions to the optics of turbid media, especially colloidal metal solutions Annalen der Physik 330, 377-445.1908.
    (66) Hsiao, Y.-S.; Charan, S.; Wu, F.-Y.; Chien, F.-C.; Chu, C.-W.; Chen, P.; Chen, F.-C. Improving the Light Trapping Efficiency of Plasmonic Polymer Solar Cells through Photon Management The Journal of Physical Chemistry C 116, 20731-20737.2012.
    (67) Kim, K.; Carroll, D. L. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices Applied Physics Letters 87, -.2005.
    (68) Topp, K.; Borchert, H.; Johnen, F.; Tune, A. V.; Knipper, M.; von Hauff, E.; Parisi, J.; Al-Shamery, K. Impact of the Incorporation of Au Nanoparticles into Polymer/Fullerene Solar Cells Journal of Physical Chemistry A 114, 3981-3989.2010.
    (69) Mei, X.; Lu, L.; Tremolet de Villers, B. J.; Huajun, S.; Jinfeng, Z.; Zhibin, Y.; Stieg, A. Z.; Qibing, P.; Schwartz, B. J.; Wang, K. L. Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles Applied Physics Letters 98, 253302 (3 pp.)-253302 (3 pp.).2011.
    (70) Paci, B.; Spyropoulos, G. D.; Generosi, A.; Bailo, D.; Albertini, V. R.; Stratakis, E.; Kymakis, E. Enhanced Structural Stability and Performance Durability of Bulk Heterojunction Photovoltaic Devices Incorporating Metallic Nanoparticles Advanced Functional Materials 21, 3573-3582.2011.
    (71) Spyropoulos, G. D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer Applied Physics Letters 100, .2012.
    (72) Kim, C.-H.; Cha, S.-H.; Kim, S. C.; Song, M.; Lee, J.; Shin, W. S.; Moon, S.-J.; Bahng, J. H.; Kotov, N. A.; Jin, S.-H. Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications ACS Nano 5, 3319-3325.2011.
    (73) Shen, H.; Bienstman, P.; Maes, B. Plasmonic absorption enhancement in organic solar cells with thin active layers Journal of Applied Physics 106, 2009.
    (74) Janković, V.; Yang, Y.; You, J.; Dou, L.; Liu, Y.; Cheung, P.; Chang, J. P.; Yang, Y. Active Layer-Incorporated, Spectrally Tuned Au/SiO2 Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics ACS Nano 7, 3815-3822.2013.
    (75) Chen, F.-C.; Wu, J.-L.; Lee, C.-L.; Hong, Y.; Kuo, C.-H.; Huang, M. H. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles Applied Physics Letters 95, .2009.
    (76) Wu, J.-L.; Chen, F.-C.; Hsiao, Y.-S.; Chien, F.-C.; Chen, P.; Kuo, C.-H.; Huang, M. H.; Hsu, C.-S. Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells ACS Nano 5, 959-967.2011.
    (77) Yang, J.; You, J.; Chen, C.-C.; Hsu, W.-C.; Tan, H.-r.; Zhang, X. W.; Hong, Z.; Yang, Y. Plasmonic Polymer Tandem Solar Cell ACS Nano 5, 6210-6217.2011.
    (78) Yoon, W.-J.; Jung, K.-Y.; Liu, J.; Duraisamy, T.; Revur, R.; Teixeira, F. L.; Sengupta, S.; Berger, P. R. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles Solar Energy Materials and Solar Cells 94, 128-132.2010.
    (79) Oo, T. Z.; Mathews, N.; Xing, G.; Wu, B.; Xing, B.; Wong, L. H.; Sum, T. C.; Mhaisalkar, S. G. Ultrafine Gold Nanowire Networks as Plasmonic Antennae in Organic Photovoltaics The Journal of Physical Chemistry C 116, 6453-6458.2012.
    (80) Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode Applied Physics Letters 90, .2007.
    (81) Cheng, H.-M.; Chiu, W.-H.; Lee, C.-H.; Tsai, S.-Y.; Hsieh, W.-F. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications The Journal of Physical Chemistry C 112, 16359-16364.2008.
    (82) Xu, F.; Dai, M.; Lu, Y.; Sun, L. Hierarchical ZnO Nanowire−Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells The Journal of Physical Chemistry C 114, 2776-2782.2010.
    (83) Wu, C.-T.; Wu, J.-J. Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells Journal of Materials Chemistry 21, 13605-13610.2011.
    (84) Jiang, W.-T.; Wu, C.-T.; Sung, Y.-H.; Wu, J.-J. Room-Temperature Fast Construction of Outperformed ZnO Nanoarchitectures on Nanowire-Array Templates for Dye-Sensitized Solar Cells ACS Applied Materials & Interfaces 5, 911-917.2013.
    (85) Chang, G.-J.; Lin, S.-Y.; Wu, J.-J. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells Nanoscale 6, 1329-1334.2014.
    (86) Lee, Y.-J.; Lloyd, M. T.; Olson, D. C.; Grubbs, R. K.; Lu, P.; Davis, R. J.; Voigt, J. A.; Hsu, J. W. P. Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices The Journal of Physical Chemistry C 113, 15778-15782.2009.
    (87) Baeten, L.; Conings, B.; Boyen, H.-G.; D'Haen, J.; Hardy, A.; D'Olieslaeger, M.; Manca, J. V.; Van Bael, M. K. Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays Advanced Materials 23, 2802-2805.2011.
    (88) Sung, Y.-H.; Liao, W.-P.; Chen, D.-W.; Wu, C.-T.; Chang, G.-J.; Wu, J.-J. Room-Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Efficient Hybrid Polymer Solar Cells Advanced Functional Materials 22, 3808-3814.2012.
    (89) Ruankham, P.; Macaraig, L.; Sagawa, T.; Nakazumi, H.; Yoshikawa, S. Surface Modification of ZnO Nanorods with Small Organic Molecular Dyes for Polymer–Inorganic Hybrid Solar Cells The Journal of Physical Chemistry C 115, 23809-23816.2011.
    (90) Znaidi, L.; Soler Illia, G. J. A. A.; Benyahia, S.; Sanchez, C.; Kanaev, A. V. Oriented ZnO thin films synthesis by sol–gel process for laser application Thin Solid Films 428, 257-262.2003.
    (91) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. High efficiency double heterojunction polymer photovoltaic cells using highly ordered nanotube arrays Applied Physics Letters 91, 152111-152111-3.2007.
    (92) Ajuria, J.; Etxebarria, I.; Azaceta, E.; Tena-Zaera, R.; Fernandez-Montcada, N.; Palomares, E.; Pacios, R. Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells Physical Chemistry Chemical Physics 13, 20871-20876.2011.
    (93) Sung, Y.-M.; Hsu, F.-C.; Wang, D.-Y.; Wang, I. S.; Chen, C.-C.; Liao, H.-C.; Su, W.-F.; Chen, Y.-F. Enhanced charge extraction in inverted hybrid photovoltaic cells assisted by graphene nanoflakes Journal of Materials Chemistry 21, 17462-17467.2011.
    (94) Chen, J.-Y.; Hsu, F.-C.; Sung, Y.-M.; Chen, Y.-F. Enhanced charge transport in hybrid polymer/ZnO-nanorod solar cells assisted by conductive small molecules Journal of Materials Chemistry 22, 15726-15731.2012.
    (95) Chen, C.-T.; Hsu, F.-C.; Sung, Y.-M.; Liao, H.-C.; Yen, W.-C.; Su, W.-F.; Chen, Y.-F. Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells Solar Energy Materials and Solar Cells 107, 69-74.2012.
    (96) Sung, Y.-M.; Hsu, F.-C.; Chen, Y.-F. Improved charge transport in inverted polymer solar cells using surface engineered ZnO-nanorod array as an electron transport layer Solar Energy Materials and Solar Cells 125, 239-247.2014.
    (97) Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination Applied Physics Letters 79, 2085-2087.2001.
    (98) Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells Journal of the American Chemical Society 133, 18042-18045.2011.
    (99) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Graetzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% Scientific Reports 2.2012.
    (100) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells Nano Letters 13, 1764-1769.2013.
    (101) Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications Journal of Materials Chemistry A 1, 5628-5641.2013.
    (102) Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; Angelis, F. D. The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment The Journal of Physical Chemistry Letters 5, 279-284.2013.
    (103) Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells The Journal of Physical Chemistry Letters 4, 3623-3630.2013.
    (104) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell Nanoscale 3, 4088-4093.2011.
    (105) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Graetzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499, 316.2013.
    (106) Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer Nano Letters 13, 2412-2417.2013.
    (107) Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System The Journal of Physical Chemistry C.2014.
    (108) Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques Nature Photonics 8, 133-138.2014.
    (109) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 501, 395.2013.
    (110) Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 Advanced Materials n/a-n/a.2014.
    (111) Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency Nat Commun 5.2014.
    (112) Ryu, S.; Noh, J. H.; Jeon, N. J.; Chan Kim, Y.; Yang, W. S.; Seo, J.; Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor Energy & Environmental Science.2014.
    (113) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Journal of the American Chemical Society 136, 7837-7840.2014.
    (114) 汪建民 材料分析 中國材料學會.
    (115) Kim, M.-S.; Kang, M.-G.; Guo, L. J.; Kim, J. Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance Applied Physics Letters 92, -.2008.
    (116) Lee, J. H.; Park, J. H.; Kim, J. S.; Lee, D. Y.; Cho, K. High efficiency polymer solar cells with wet deposited plasmonic gold nanodots Organic Electronics 10, 416-420.2009.
    (117) Aryal, M.; Trivedi, K.; Hu, W. Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography ACS Nano 3, 3085-3090.2009.
    (118) Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J.-S. The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films Journal of the American Chemical Society 133, 9834-9843.2011.
    (119) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3 Science 342, 344-347.2013.
    (120) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber Science 342, 341-344.2013.

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE