簡易檢索 / 詳目顯示

研究生: 曾莛芫
Zeng, Ting-Yuan
論文名稱: 基於半雙工及全雙工之中繼網路下封包更新決策
Status Update Policies in Relay Networks with Half and Full Duplex Radios
指導教授: 張志文
Chang, Wenson
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 38
中文關鍵詞: 信息年齡全雙工半雙工搶佔不搶占
外文關鍵詞: Age of Information, full-duplex, half-duplex, preemption, non-preemption
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第五代行動通訊中,確保傳輸可靠性以及達到超低延遲的要求是非常重要的,本篇論文針對有限區塊長度機制下解碼轉發中繼的無線通訊系統進行研究。來源端根據卜瓦松程序生成狀態更新封包,依據硬體多工能力,封包可借助全雙工或半雙工模式下的中繼傳送至目的端,但透過中繼傳輸可能產生額外延遲,導致狀態更新封包不能及時的被接收,這會使物聯網裝置收到非即時資訊的封包影響狀態更新的效率。我們提出適用於全雙工及半雙工中繼系統的封包更新策略,並引入信息年齡作為衡量狀態更新封包的新鮮度指標,並且我們各別針對所提出的四種更新策略分析其平均信息年齡的近似理論值,最後透過模擬结果驗證近似理論值的正確性,以及顯示系统性能受關鍵参数的影響,並且結果顯示所提出的更新策略可優於無中繼幫忙協助的傳輸系統。

    In the fifth generation (5G) communication, it is crucial to ensure transmission reliability and achieve ultra-low latency requirement. In this thesis, we consider a decode-and-forward (DF) relaying wireless communication system under a finite block length regime. The source generates status update packets according to a Poisson process. To improve the reliability of communication, the packets will be transmitted to the destination through the help of full-duplex (FD) or half-duplex (HD) relay. However, the status updates may not be received in time when transmitted through relay assistance, and it will cause the Internet of Things (IoT) device to receive status updates with outdated information. We propose the status update policies for FD and HD relaying systems, and the age of information (AoI) is exploited as a metric to measure the freshness of status updates. The average AoI for the four proposed update policies are analyzed theoretically. Simulation results are presented to verify the analysis accuracy and demonstrate the system performance subject to numerous key parameters. Our results reveal that the proposed update policies outperform the transmission system without the help of relays.

    Chinese Abstract i Abstract ii Acknowledgement iii List of Figures vi List of Tables vii List of Symbols viii List of Acronyms x 1 Introduction and Related Work 1 1.1 Motivation 1 1.2 Related Work 2 1.2.1 Cooperative Communication 2 1.2.2 Age of Information 2 2 System Model and Proposed Method 4 2.1 System Model 4 2.2 Block Error Rate in the Finite-Block Length Regime 6 2.3 Propose Status Update Policies of Half-Duplex Relaying 8 2.3.1 Non-Preemption of Half-Duplex Relaying (NP-HDR) 8 2.3.2 Preemption of Half-Duplex Relaying (PR-HDR) 8 2.4 Propose Status Update Policies of Full-Duplex Relaying 9 2.4.1 Non-Preemption of Full-Duplex Relaying (NP-FDR) 9 2.4.2 Preemption of Full-Duplex Relaying (PR-FDR) 9 3 Age of Information Analysis with Packet Management 10 3.1 Average AoI Analysis in Half Duplex Relaying 10 3.1.1 Evolution of AoI 10 3.1.2 Average AoI of NP-HDR 12 3.1.3 Average AoI of PR-HDR 15 3.2 Average AoI Analysis in Full Duplex Relaying 18 3.2.1 Evolution of AoI 18 3.2.2 Average AoI of NP-FDR 19 3.2.3 Average AoI of PR-FDR 22 4 Analytical Results and Simulation 25 4.1 The Impact of Blocklength 27 4.2 The Impact of Transmit Power 30 4.3 Comparison with Direct Transmission 32 5 Conclusions 34 5.1 Summary of Thesis 34 References 36

    [1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,”IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

    [2] X. Liu and N. Ansari, “Green Relay Assisted D2D Communications With Dual Batteries in Heterogeneous Cellular Networks for IoT,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1707–1715, 2017.

    [3] H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana, W. Bao, Y. Li, and B. Vucetic, “Ultra-Reliable Low Latency Cellular Networks: Use Cases, Challenges and Approaches,” IEEE Communications Magazine, vol. 56, no. 12, pp. 119–125, 2018.

    [4] M. Dai, P. Wang, S. Zhang, B. Chen, H. Wang, X. Lin, and C. Sun, “Survey on Cooperative Strategies for Wireless Relay Channels,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 9, pp. 926–942, 2014.

    [5] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior,” IEEE Transactions on Information theory, vol. 50, no. 12, pp. 3062–3080, 2004.

    [6] S. Ikki and M. H. Ahmed, “Performance Analysis of Cooperative Diversity Wireless Networks over Nakagami-m Fading channel,” IEEE Communications letters, vol. 11, no. 4, pp. 334–336, 2007.

    [7] I. Maric and R. D. Yates, “Bandwidth and Power Allocation for Cooperative Strategies in Gaussian Relay Networks,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1880–1889, 2010.

    [8] Y. Gu, H. Chen, Y. Li, and B. Vucetic, “Ultra-Reliable Short-Packet Communications: Half-Duplex or Full-Duplex Relaying?” IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 348–351, 2018.

    [9] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often Should One Update?” in Proc. IEEE INFOCOM, 2012, pp. 2731–2735.

    [10] S. Farazi, A. G. Klein, and D. R. Brown, “Age of Information in Energy Harvesting Status Update Systems: When to Preempt in Service?” in Proc. IEEE International Symposium on Information Theory (ISIT), 2018, pp. 2436–2440.

    [11] V. Kavitha, E. Altman, and I. Saha, “Controlling Packet Drops to Improve Freshness of information,” CoRR, vol. abs/1807.09325, 2018. [Online]. Available: http://arxiv.org/abs/1807.09325

    [12] R. Wang, Y. Gu, H. Chen, Y. Li, and B. Vucetic, “On the Age of Information of Short-Packet Communications with Packet Management,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

    [13] T. Riihonen, S. Werner, and R. Wichman, “Hybrid Full-Duplex/Half-Duplex Relaying with Transmit Power Adaptation,” IEEE Transactions on Wireless Communications, vol. 10, no. 9, pp. 3074–3085, 2011.

    [14] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel Coding Rate in the Finite Blocklength Regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.

    [15] E. Najm, R. Yates, and E. Soljanin, “Status Updates Through M/G/1/1 Queues with HARQ,” in Proc. IEEE International Symposium on Information Theory (ISIT), 2017, pp. 131–135.

    [16] D. Zheng, Y. Yang, L. Wei, and B. Jiao, “Decode-and-Forward Short-Packet Relaying in the Internet of Things: Timely Status Updates,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8423–8437, 2021.

    [17] B. Makki, T. Svensson, and M. Zorzi, “Finite Block-length Analysis of the Incremental Redundancy HARQ,” IEEE Wireless Communications Letters, vol. 3, no. 5, pp. 529–532, 2014.

    [18] K. Chen and L. Huang, “Age-of-Information in the Presence of Error,” in Proc. IEEE International Symposium on Information Theory (ISIT), 2016, pp. 2579–2583.

    [19] Y. Gu, H. Chen, Y. Zhou, Y. Li, and B. Vucetic, “Timely Status Update in Internet of Things Monitoring Systems: An Age-Energy Tradeoff,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5324–5335, 2019.

    下載圖示 校內:2024-09-12公開
    校外:2024-09-12公開
    QR CODE