| 研究生: |
陳保同 Chen, Pao-Tung |
|---|---|
| 論文名稱: |
熱鎢絲化學氣相低溫沉積高性能奈米晶矽薄膜電晶體之研究 The Study of High Performance Nanocrystalline Silicon Thin Film Transistor Prepared by Hot-Wire Chemical Vapor Deposition |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 熱鎢絲化學氣相沉積 、奈米晶矽 、薄膜電晶體 |
| 外文關鍵詞: | HWCVD, Nanocrystalline Silicon, Thin Film Transistor |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前廣為應用的非晶矽薄膜電晶體雖然製程簡單可以大面積低溫均勻成長,但其載子場效遷移率太低導致驅動電流較低是其最大的缺點。雖然近來積極研究的多晶矽薄膜電晶體擁有大的驅動電流,但因其需高溫製程故不利於玻璃基板上成長。此外,大面積低溫沉積的多晶矽則製程繁雜,不易均勻成長且具較高成本。奈米晶矽薄膜電晶體,不但保有目前非晶矽薄膜技術的優點可以在低溫(<250℃)下大面積及高速率成長,最重要的是其具有較高載子場效遷移率以提升驅動電流及增加開關電流比。
本論文利用具有高沉積速率與低成長溫度優點的熱鎢絲化學氣相沉積(HWCVD)技術來成長奈米晶矽薄膜,並以場發射掃瞄式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、X光繞射儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)和電流-電壓曲線量測來分析薄膜各種參數,如:薄膜厚度、熱退火處理、有無添加緩衝層和不同電極對薄膜電特性的影響。此外,我們並以最佳薄膜參數研製出各種不同結構的奈米晶矽薄膜電晶體,如:改變絕緣層厚度、有無添加緩衝層、不同層數的主動層疊層技術及採用不同n+層結構。成長出的最佳元件特性為:最低關電流為6.3×10-11(A)、最高開電流為2.5×10-5(A)、最大開關電流比為~106和最佳漂移遷移率為18.58(cm2/Vs)。
Nanocrystalline silicon (nc-Si) film has higher mobility than amorphous silicon film to elevate the current driving ability and can be uniformly deposited at low temperature (250℃), thus was employed to prepare thin film transistor (TFT) for large area display applications.
In this work, the hot-wire chemical vapor deposition (HWCVD) was used to prepare TFT for its feature of low temperature and high deposition rate. We analyzed the influence of deposition conditions such as film thickness, with and without a buffer layer, and thermal annealing on characteristics of the film through FESEM, AFM, XRD, FTIR, and I-V curve measurements. Besides, we successfully fabricate the high performance nc-Si TFTs with various structure such as different gate oxide thicknesses, with and without a buffer layer, various layer number for the layer-by-layer process, and different n+ layer structures. The best performance of the developed nc-Si TFT are 6.3×10-11 (A) for leakage current, 2.5×10-5 (A) for device driving on current, ~106 for on/off current ratio , and 18.58 (cm2/Vs) for drift mobility.
[1] 紀國鐘,鄭晃忠,“液晶顯示器技術手冊,”經濟部技術處發行,台灣電子材料與元件協會出版。
[2] Tsu-Jae King, Krishna C. Saraswat,“Polycrystalline Sillicon- Germanium Thin Film Transistors,”IEEE Trans. Electron Devices, Vol.41, No.9, pp.1581-1591(1994)
[3] Sigurd Wagner, Helena Gleskova, I-Chun Cheng, Ming Wu,“Silicon for thin-film transistors,”Thin Solid Films, 430, pp.15–19(2003).
[4] Joong-Hyun Park, Sang-Myeon Han, Sang-Geun Park, Min-Koo Han, “Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150℃,”Phys. Scr, T126, pp.85–88(2006)
[5] Dosev, Dosi Konstantinov,“Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition,” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya(UPC)
[6] A.T.Hatzopoulos, I.Pappas, D.H.Tassis, N.Arpatzanis,“Analytical current-voltage model for nanocrystalline silicon thin-film transistors,”Applied Physics Letters, 89, 193504(2006)
[7] 林秉章,方炎坤, ”利用層疊氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民94年6月。
[8] Czang-Ho Lee, Denis Striakhilev, Arokia Nathan,“Stability of nc-Si:H TFTs With SiliconNitride Gate Dielectric,” IEEE transactions on electron on devices, 54, pp.45-51(2007)
[9] Mebarji,B., Sumiya, S., Yoshida, R., Ito, M., and Tsukada, T., Materials Letters, 41, 16(1999)
[10] D.Hong, "Process Development and Modeling of Thin-Film Transistors," Master's Thesis, Oregon State University(2005)
[11] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla,“Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, 299–302, pp.400–404(2002)
[12] K.Lee, M.Shur, T.A.Fjeldly, T.Ytterda,“Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc.(1993)
[13] M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, T. Ytterdal,“SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp.2833-9(1997)
[14] Dosev, Dosi Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC)
[15] Sang-Myeon Han, Joong-Hyun Park, Hee-Sun Shin, Young-Hwan Choi, Min-Koo Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD,” IEEE(2005)
[16] A.Rolland, J.Richard, J.P.Kleider, D.Mencaraglia, ”Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations,” J. Electrochem. Soc., 140, pp. 3679-83(1993)
[17] 翁得期,“化學氣相沉積法低溫成長奈米多晶矽薄膜及氧化矽奈米線之研究,”國立成功大學化工所博士論文。
[18] H.Wiesmann, A.K.Gosh, T.McMahon, M.Strongin,“a-Si : H produced by high-temperature thermal decomposition of silane,” Appl. Phys., 50, pp.3752(1979)
[19] H.Matsumura, H.Tachibana,“Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2,”Appl. Phys. Lett., 47, pp. 833 (1985)
[20] D.Beeman, R.Tsu, M.F.Toorpe, Phys. Rev. B, 32, pp. 874(1985)
[21] R.E.I.Schoropp, K.F.Feenstra, E.C.Molenbroek, H.Meiling, J.K.Rath,”Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition,”Phil. Mag. B, 76, pp.309-21(1997)
[22] David Soler i Vilamitjana,“AMORPHOUS SILICON SOLAR CELLS OBTAINED BY HOT-WIRE CHEMICAL VAPOUR DEPOSITION,” Memòria presentada per optar al grau de Doctor, setembre de 2004
[23] KF Feenstra, REI Schropp, WF Van der Weg,“Deposition of amorphous silicon films by hot-wire chemical vapor deposition,”Appl. Phy., 85, pp. 6843(1999)
[24] P.Roca i Cabarrocas, S Hamma,“Microcrystalline silicon growth on a-Si:H: effects of hydrogen,”Thin Solid Films, 337, pp. 23-26(1999)
[25] F. Feenstra, P.F.A. Alkemade, E. Algra, R.E.I. Schropp, W.F. van der Weg, “Effect of post-deposition treatments on the hydrogenation of hot-wire deposited amorphous silicon films,”Progress in Photovoltaics: Research and Applications, 7, pp. 341-351(1999)