| 研究生: |
蔡牧旻 Tsai, Mu-Min |
|---|---|
| 論文名稱: |
具粗糙化結構晶種層之還原型-氧化石墨烯/氧化鋅奈米柱異質接面NO2氣體感測器之研究 Investigation of reduced graphene oxide/ZnO nanorod heterojunction NO2 gas sensors with roughed seed layer |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 還原型-氧化石墨烯 、異質接面結構 、二氧化氮氣體感測器 、粗糙化結構 、氧化鋅奈米柱 |
| 外文關鍵詞: | reduced graphene oxide, heterojunction, NO2 gas sensor, roughed seed layer, ZnO nanorod |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 蔡嬪嬪、曾明漢, “氣體感測器之簡介、應用及市場,” 材料與社會, vol. 68, 1992.
[2] 陳景森, 與陳淨修, “揭開酸雨的神祕面紗──酸雨的成因及對策,” 科學月刊, vol. 23, 1992.
[3] M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett., vol. 93, pp. 263103-1−263103-3, 2008.
[4] S. Bhatia, N. Verma, and R. Bedi, “Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques,” Results Phys., vol. 7, pp. 801−806, 2017.
[5] E. Souteyrand, D. Nicolas, E. Queau, and J. R. Martin, “Influence of surface modifications on semiconductor gas sensor behaviour,” Sens. Actuator B-Chem., vol. 26, pp. 174−178, 1995.
[6] M. Hjiri, N. Zahmouli, R. Dhahri, S. Leonardi, L. El Mir, and G. Neri, “Doped-ZnO nanoparticles for selective gas sensors,” J. Mater. Sci. Mater. Electron., vol. 28, pp. 9667−9674, 2017.
[7] M. Z. Jiao, N. V. Chien, N. V. Duy, N. D. Hoa, N. V. Hieu, K. Hjort, and H. Nguyen, “On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor,” Mater. Lett., vol. 169, pp. 231−235, 2016.
[8] Y. Navale, S. Navale, F. Stadler, N. Ramgir, and V. Patil, “Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors,” Ceram. Int., vol. 45, pp. 1513−1522, 2019.
[9] V. L. Patil, S. A. Vanalakar, N. L. Tarwal, A. P. Patil, T. D. Dongale, J. H. Kim, P. S. Patil, “Construction of Cu doped ZnO nanorods by chemical method for low temperature detection of NO2 gas,” Sens. Actuator A-Chem., vol. 299, pp. 111611-1−111611-11, 2019.
[10] P. Rai, Y. S. Kim, H. M. Song, M. K. Song, Y. T. Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases,” Sens. Actuator B-Chem., vol. 165, pp. 133−142, 2012.
[11] G. J. Sun, J. K. Lee, S. Choi, W. I. Lee, H. W. Kim, C. Lee, “Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors,” ACS Appl. Mater. Interfaces, vol. 9, pp. 9975−9985, 2017.
[12] Y. H. Navale, S. T. Navale, F. J. Stadler, N. S. Ramgir, V. B. Patil, “Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors,” Ceram. Int., vol. 45, pp. 1513−1522, 2019.
[13] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293−340, 2005.
[14] R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide,” J. Mater. Res., vol. 11, pp. 1659−1664, 1996.
[15] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting transparent thin films,” IOP Publishing, 1995.
[16] H. W. Ryua and B. S. Park, “ZnO sol-gel derives porous film for CO gas sensing,” Sens. Actuators B, vol. 96, pp. 717−722, 2003.
[17] S. Vanalakar, M. Gang, V. Patil, T. Dongale, P. Patil, and J. Kim, “Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas,” J. Electron. Mater., vol. 48, pp. 589−595, 2019.
[18] D. G. Baik and S. M. Cho, “Application of sol-del derived films for ZnO/n-Si junction solar cells,” Thin Solid Films, vol. 354, pp. 227−231, 1999.
[19] K. Kandpal and N. Gupta, “Zinc oxide thin film transistors: advances, challenges and future trends,” BEEI, vol. 5, pp. 205−212, 2016.
[20] D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D-Appl. Phys., vol. 40, pp. 387−412, 2007.
[21] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403−404, pp. 485−488, 2002.
[22] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757−759, 2002.
[23] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett., vol. 82, pp. 1117−1119, 2003.
[24] B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, pp. 107−110, 2000.
[25] S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron. Adv. Mater., vol. 10, pp. 2578−2583, 2008.
[26] 蕭慕柔, “電解剝落法之石墨表面性質探討,” 國立中央大學化學工程與材料工程學系, 2012.
[27] N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., vol. 176, pp. 250−254, 1968.
[28] S. Park and R. S. Rouff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, pp. 217−224, 2009.
[29] K. I. Bolotina, K. J. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communication, vol. 146, pp. 351−355, 2008.
[30] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, pp. 902−907, 2008.
[31] H. Bai, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Advanced Materials, vol. 23, pp. 1089−1115, 2011.
[32] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by x-ray photoelectron and micro-raman spectroscopy,” Carbon, vol. 47, pp. 145−152, 2009.
[33] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, pp. 1191−1196, 2006.
[34] J. Wang, “Electrochemical sensing of explosives,” Electroynalysis, vol. 19, pp. 415−423, 2007.
[35] C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuator B-Chem., vol. 128, pp. 320−325, 2007.
[36] S. Lenaerts, J. Roggen, and G. Maes, “FT-IR characterization of tin dioxide gas sensor materials under working conditions,” Spectroc. Acta Pt. A-Molec. Biomolec., vol. 51, pp. 883−894, 1995.
[37] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., vol. 85, pp. 5923−5925, 2004.
[38] P. Shankar and J. B. B. Rayappan, “Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review,” Sci. Lett. J., vol. 4, p. 126, 2015.
[39] M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” J. Am. Ceram. Soc., vol. 59, pp. 4−8, 1976.
[40] A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOX sensors based on semiconducting metal oxide nanostructures: progress and perspectives,” Sens. Actuators B, vol. 171−172, pp. 25−42, 2012.
[41] Z. U. Abideen, J. H. Kim, J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, “Electrospun metal oxide composite nanofibers gas sensors: a review,” J. Korean Ceram. Soc., vol. 54, pp. 366−379, 2017.
[42] Z. Wang, Z. Jia, Q. Li, X. Zhang, W. Sun, J. Sun, B. Liu and B. Ha, “The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite,” J. Colloid Interface Sci., vol. 537, pp. 228−237, 2019.
[43] X. Li, Y. Zhao, X. Wang, J. Wang, A. M. Gaskov and S. A. Akbar, “Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors,” Sens. Actuators B Chem., vol. 230, pp. 330−336, 2016.
[44] O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B, vol. 77, pp. 125416-1−125416-6, 2008.
[45] B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C, vol. 112, pp. 13442−13446, 2008.
[46] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires,” Sens. Actuator B-Chem., vol. 274, pp. 356−369, 2018.
[47] M. M. Abdullah, M. H. Suhail, and S. I. Abbas, “Fabrication and testing of SnO2 thin films as a gas sensor,” Arch. Appl. Sci. Res., vol. 4, pp. 1279−1288, 2012.
[48] J. Huang, H. Ren, P. Sun, C. Gu, Y. Sun, and J. Liu, “Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property,” Sens. Actuator B-Chem., vol. 188, pp. 249−256, 2013.
[49] A. Mirzaei, S. Park, G. J. Sun, H. Kheel, C. Lee, and S. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc., vol. 69, pp. 373−380, 2016.
[50] S. Park, S. Kim, H. Kheel, and C. Lee, “Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor,” Sens. Actuator B-Chem., vol. 222, pp. 1193−1200, 2016.
[51] 楊雲凱, “物理氣相沉積(PVD)介紹”, 國家奈米元件實驗室奈米通訊, vol. 22, pp. 33−35, 2015.
[52] B. S. Sannakashappanavar, N. A. Pattanashetti, C. Byrareddy, and A. B. Yadav, “Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers,” AIP Conference Proceedings, vol. 1943, pp. 020077-1−020077-7, 2018.
[53] M. Breedon, J. Yu, W. Wlodarski, and K. Kalantar-zadeh, “ZnO nanostructured arrays grown from aqueous solutions on different substrates,” ICONN, pp. 9−12, 2008.
[54] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys, vol. 9, pp. 1276−1291, 2007.
[55] 羅聖全, “科學基礎研究之重要利器—掃描式電子顯微鏡(SEM),” 科學研習, vol. 52, pp. 4−6, 2013.
[56] S. Vishwakarma, J. Upadhyay, and H. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films, vol. 176, pp. 99−110, 1989.
[57] V. Anand, A. Sakthivelu, K. D. A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, and H. Algarni, “Rare earth Eu3+ Co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics,” J. Sol-Gel Sci. Technol., vol. 86, pp. 293−304, 2018.
[58] K. Uma, E. Muniranthinam, S. Chong, T. C. K. Yang and J. H. Lin, “Fabrication of hybrid catalyst ZnO nanorod/?-Fe2O3 composites for hydrogen evolution reaction,” MDPI, pp. 5−6, 2005.
[59] M. Kamruzzaman and J. Zapien, “Effect of temperature, time, concentration, annealing, and substrates on ZnO nanorod arrays growth by hydrothermal process on hot plate,” Crystallogr. Rep., vol. 63, pp. 456−471, 2018.
[60] C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri, and N. Pinna, “Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism,” J. Phys. Chem. C, vol. 117, pp. 19729−19739, 2013.
[61] H. Y. Lee, Y. C. Heish, C. T. Lee, “High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane,” J. Alloy. Compd., vol. 773, pp.950−954, 2019.
[62] S. Vishwakarma, J. Upadhyay, and H. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films, vol. 176, pp. 99−110, 1989.
[63] J. T. Robinson, F. K. Perkins, E.S. Snow, Z. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett., vol. 8, pp. 3137−3140, 2008.
校內:2026-10-20公開