研究生: |
林上村 Lin, Shang-Tsuen |
---|---|
論文名稱: |
鈦酸鋇/鐵酸鉍雙介電層電阻式記憶體之電性研究 The Study of Electrical Properties of BaTiO3/BiFeO3 Dual Dielectric Layer Resistive Random Access Memory |
指導教授: |
莊文魁
Chuang, Ricky Wen-Kuei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 鈦酸鋇薄膜 、鐵酸鉍薄膜 、電阻式記憶體 、雙層結構 、退火製程 |
外文關鍵詞: | BaTiO3 film, BiFeO3 film, random resistive-access memory (ReRAM), dual active layer (bilayer) structure, annealing process |
相關次數: | 點閱:80 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技發達的現代社會中,仰賴大量計算及儲存空間的物聯網、AI和大數據相關的科技也不斷的在發展,使得我們對記憶體的講究和需求也日趨上升,其中,電阻式記憶體(RRAM)結構簡單、易於微縮、低功耗、高速操作等諸多優點,使其成為下一代非揮發性記憶體的有利候選。
本實驗以磁控濺鍍法將鈦酸鋇(BaTiO3)及鐵酸鉍(BiFeO3)鍍製在ITO基板上,分別製作單介電層元件: Al/ BaTiO3/ITO 和 Ag/ BaTiO3/ITO ; 以及雙介電層元件: Al/ BaTiO3/ BiFeO3/ITO 和 Ag/ BaTiO3/ BiFeO3/ITO。其中在製作雙介電層元件時的退火製程分為雙層主動層一起退火及各別退火,藉由元件的記憶體電性表現嘗試探討一起退火及各別退火對雙主動層元件的的影響。
電性量測方面利用半導體參數分析儀(Agilent B1500A)量測電阻式記憶體元件的電流-電壓特性曲線(I-V curve)及元件穩定性,透過量測,我們可以發現雙主動層元件在reset時的電流會呈現階段性的下降,日後或許可以利用這個特色來使RRAM達到多階記憶(multi-level memory)的效果,另外主動層各別退火的元件在電性持久度上較兩層主動層一起做退火的元件來的好,Ag/ BaTiO3/ BiFeO3/ITO 元件的開關電流比值(on/off ratio) > 50 ,並且在高、低阻態的維持時間都能超過10000秒,其開關切換次數也穩定的來到1500次。
除了一般的RRAM電性量測外,我們也對鍍製出的鈦酸鋇及鐵酸鉍薄膜進行XRD及XPS分析,另外,本論文也對參與RRAM燈絲傳導機制的歐姆傳導、空間電荷侷限電流(SCLC)稍作探討。
Today, in the era of advanced technology, the IoT, AI, and big data which heavily depend on the number of calculations and storage spaces, have also been developed to address the looming demands. Owing to the advantages of simple structure, low power consumption, and rapid operation speed on data reading and writing, random resistive memory (ReRAM) stands out among the available types of memory.
In this research, BaTiO3 target and BiFeO3 targets are prepared and then sputtered on ITO substrate to realize a single active layer: Al/ BaTiO3/ITO and Ag/ BaTiO3/ITO, as well as dual active layers: Al/ BaTiO3/ BiFeO3/ITO and Ag/ BaTiO3/ BiFeO3/ITO. For the operation of dual active layers, the impacts of the different annealing environments on the memory properties of the devices are investigated. The annealing process is handled in two separate approaches for comparison: either annealing both layers of this dual-layer stack concurrently, or annealing each layer separately.
For the aspects of the electrical characteristics, the I-V curves, the endurance, and the memory retention of the devices are probed by a precision semiconductor parameter analyzer (Agilent B1500A). It is found that the current of devices with dual active layers has manifested a two-step decline during the reset process, which may have a unique potential for realizing the multi-level memory of ReRAM in the future. Additionally, the ReRAM memory endurance of the dual-stack device with each of the active layers annealed separately has outperformed the one with active layers that are annealed together. Also, the on-off switching current ratio of Ag/ BaTiO3/ BiFeO3/ITO is in the excess of 50, and the retention time in both high and low resistance states could be maintained for more than 10000 seconds, while during the endurance test, over 1500 switching cycles are also realized.
In addition to the measured electrical properties, XRD and XPS analyses of BaTiO3 and BiFeO3 thin film are also performed. A follow-up discussion on the filament conduction mechanisms responsible for the observation of the high and low resistance states, including the ohmic conduction, and space charge limited current (SCLC) is presented.
[1] 李修瑩,”韓國次世代非揮發性記憶體發展現況與策略”,拓墣產業研究所, (2007)。
[2] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, ” Recent progress in resistive random access memories: Materials, switching mechanisms, and performance.” Materials Science and Engineering: R: Reports, vol 83, no. 1, pp. 1-59, 2014.
[3] Y. Li, S. Long, Q. Liu, H. Lü, S. Liu, and M. Liu, ” An overview of resistive random access memory devices, ” Chinese Science Bulletin, vol. 56, no. 28, pp. 3072-3078, 2011.
[4] F. Pan, C. Chen, Z. Wang, J. Yang, and F. Zeng, “ Nonvolatile resistive switching memories-characteristics, mechanisms and challenges, “ Progress in Natural Science: Materials International, vol. 20, pp. 1-15, 2010.
[5] R. W. Chuang, and Y. C. Chang,“The Study of Electrical Properties and Photoresponsivity of BiFeO3 Crossbar Resistive Random Access Memory,”國立成功大學碩士論文, 2021.
[6] R. W. Chuang, and B. L. Liu,“The Electro-optical Response of the BaTiO3 Resistive Random Access Memory (ReRAM) Based on the Parallel Double Disk Resonators,”國立成功大學碩士論文, 2021.
[7] D. S. Jeong, R. Thoams, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, p. 076502, 2012.
[8] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, “Resistive Random Access
Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (MLC) Storage, Modeling, and Applications,” Nanoscale Research Letters vol. 15, pp. 1-26, 2020.
[9] AJ Moulson, J.M. Herbert, Electroceramics: material, properties, applications. John Wiley & Sons, 2003.
[10] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, and J. J. A. P. Rödel,” BaTiO3-based piezoelectrics: Fundamentals, current status, and
Perspectives,” Applied Physics Reviews, vol. 4, no. 4, p.041305, 2017.
[11] W. Eerenstein, N. D. Mathur and J. F. Scott, “Multiferroic and magnetoelectric
materials,” nature, vol. 442, no. 7104, pp. 759-765, 2006.
[12] G. Achenbach,W. James, and R. Gerson, “Preparation of Single-Phase Polycrystalline BiFeO3,” Journal of the American Ceramic Society, vol. 50, no. 8, p.p. 437-437, 1967.
[13] F. Kubel and H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3,” Acta Crystallographica Section B: Structural Science, vol. 46,no. 6, p.p. 698-702, 1990.
[14] P.Feng, C.Chaoh, Z.-s.Wang, Y.-c.YANG, Y.Jing, and Z.Fei, “Nonvolatile resistive switching memories-characteristics, mechanisms and challenges,” Progress in Natural Science: Materials International, vol. 20 , p.p. 1-15, 2010.
[15] D. C. Gilmer, G. Bersuker, H. Y. Park, C. Park, B. Butcher, W. Wang, and R. Jammy, “Effects of RRAM Stack Configuration on Forming Voltage and Current Overshoot,” in 2011 3rd IEEE International Memory Workshop (IMW), 2011: IEEE, pp. 1-4.
[16] X. Xuan, B. Xu, D. Sinton, and D. Li, “ Electroosmotic flow with Joule heating effects, ” Lab on a Chip, vol. 4, no. 3, pp. 230-236, 2004.
[17] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, and C.U. Jung, “ Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors,” Applied Physics Letters, vol.92, no.18, p. 183507, 2008.
[18] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng ,“Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application,”Nano letters, vol.9, no.4, pp. 1636-1643, 2009.
[19] C. Ye, T. Deng, J. Zhang, L. Shen, P. He, W. Wei, and H. Wang, “Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory, ” Semiconductor Science and Technology, vol. 31, no. 10, pp.105005, 2016.
[20] M. R. Park, Y. Abbas, H. Abbas, Q. Hu, T. S. Lee, Y. J. Choi, and C. J. Kang, “ Resistive switching characteristics in hafnium oxide, tantalum oxide and bilayer devices, ” Microelectronic Engineering, vol. 159, pp.190-197, 2016.
[21] H-S.P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, and M. J. Tsai,“Metal–Oxide RRAM,”Proceedings of the IEEE, vol.100, no.6, pp. 1951-1970, 2012.
[22] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo,“A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,”Nature materials, vol.10, no.8, pp. 625-630, 2011.
[23] R. Waser,“Nanoelectronics and information technology,”John Wiely & Sons, 2012.
[24] J. Lee, E. M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, and H. Hwang ,“Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications,” Applied Physics Letters, vol.97, no.17, pp. 172105-172105-3, 2010.
[25] S. H. Chang, S. B. Lee, D. Y. Jeon, S. J. Park, G. T. Kim, S. M. Yang, S. C. Chae, H. K. Yoo, B. S. Kang, M.-J. Lee, T. W. Noh ,“Oxide Double-Layer Nanocrossbar for Ultrahigh-Density Bipolar Resistive Memory,” Applied Maerials, vol.23, no.35, pp. 4063-4067, 2011.
[26] L. Goux, A. Fantini, G. Kar, Y.-Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, ” Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering,” VLSI Technology (VLSIT), pp. 159-160, 2012.
[27] Y. Yang, S. Choi, and W. Lu,“Oxide Heterostructure Resistive Memory,” Nano letters, vol.13, no.6, pp. 2908-2915, 2013.
[28] E. W. Lim, and R. Ismail. "Conduction mechanism of valence change resistive switching memory: a survey." Electronics, vol. 4, no.3, pp. 586-613,2015.
[29] Chiu, Fu-Chien. "A review on conduction mechanisms in dielectric films." Advances in Materials Science and Engineering, vol. 2014, no. 578168, 2014.
[30] A. A. Grinberg, S. Luryi, M. Pinto,and N. Schryer, "Space-charge-limited current in a film." IEEE Transactions on Electron Devices, vol. 36, no.6, pp. 1162-1170.
[31] P. Mark, and W. Helfrich, "Space‐charge‐limited currents in organic crystals." Journal of Applied Physics, vol. 33, no.1, pp. 205-215, 1962.
[32] P. Sheng, “ Fluctuation-induced tunneling conduction in disordered materials, ” Physical Review B, vol.21, no. 6, pp.2180, 1980.
[33] P. Sheng, E. K. Sichel, and J. I. Gittleman, “ Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites, ” Physical Review Letters, vol. 40, no. 18, pp. 1197, 1978.
[34] Yu, S., Wu, Y., Chai, Y., Provine, J., & Wong, H. S. P. (2011, April). Characterization of switching parameters and multilevel capability in HfO x/AlO x bi-layer RRAM devices. In Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications (pp. 1-2). IEEE.
[35] J.Woo, K. Moon, J Song, S. Lee, and M. Kwak, "Improved synaptic behavior under identical pulses using AlO x/HfO 2 bilayer RRAM array for neuromorphic systems." IEEE Electron Device Letters 37.8 (2016): 994-997.
[36] S. Nayak, B. Sahoo, T. K. Chaki, and D. Khastgir, “ Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior, ” RSC Advances, vol 4, no. 3, pp. 1212-1224, 2014.
[37] S. Chakrabarti, S. Ginnaram, S. Jana, Z. Y. Wu, K. Singh, A. Roy, and J. R. Yang, “Negative voltage modulated multi-level resistive switching by using a Cr/BaTiOx/TiN structure and quantum conductance through evidence of H2O2 sensing mechanism,” Scientific reports, vol 7, no 1, pp. 1-13, 2017.
[38] Y.H.Tseng, W. C. Shen, and C. J. Lin, "Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise." Journal of Applied Physics, vol. 111, no.7, p. 073701, 2012.
[39] Y. Zhu, K. Zheng, X. Wu, and L. Ang, "Enhanced stability of filament-type resistive switching by interface engineering," Scientific Reports, vol. 7, no. 1, pp. 1-7, 2017.
[40] J. Zhou, S. Kim, and W. D. Lu, "Crossbar RRAM arrays: Selector device requirements during read operation." IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 1369-1376, 2014.
[41] H. Y. Zhang, W. M. Xiong, X. Y. Zhang, B. Wang, and Y. Zheng, “ Thermal stability of resistive switching effect in ZnO/BiFeO3 bilayer structure, ” AIP Advances, vol. 9, no. 3, pp.035121, 2019.
[42] H. Zhu, H. Ma, and Y. Zhao, ” Role of rapid and slow cooling on leakage mechanism and ferroelectric polarization of sputtered epitaxial BiFeO3 thin films,” Vacuum, vol. 163, pp. 312-316, 2019.
[43] C. F. Chang, J. Y. Chen, G. M. Huang, T. Y. Lin, K. L. Tai, C. Y. Huang, and W. W.Wu, “ Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM, ” Nano Energy, vol. 53, pp. 871-879, 2018.