簡易檢索 / 詳目顯示

研究生: 呂佳馨
Leu, Chia-Hsing
論文名稱: 探討激肽釋放酶-1、激肽釋放酶抑制蛋白和血管內皮生長因子在流行性感冒病毒感染的角色
Roles of kallikrein-related peptidase 1, kallistatin and vascular endothelial growth factor in influenza virus infection
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 流行性感冒病毒血球凝集素激肽釋放酶激肽釋放酶抑制蛋白血管內皮生長因子干擾素
外文關鍵詞: influenza virus, hemagglutinin, KLK1, kallikrein, kallistatin, VEGF, interferon
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流行性感冒病毒感染是種常見的人類呼吸道疾病。流行性感冒病毒會引起發炎反應,嚴重則會導致呼吸衰竭和組織受損。流行性感冒病毒可經由抗原變異,造成病毒能躲避宿主的免疫反應並能對流感病毒的M2蛋白或是神經胺酸酶抑制所開發的抗流感藥物產生抗藥性。目前仍付出相當大的努力於發展新型的抗流感病毒藥物。流感病毒的感染需要血球凝集素(hemagglutinin)的切割,而血球凝集素通常是由宿主的類胰島素蛋白酶(trypsin-like protease)切割。激肽釋放酶-1(kallikrein-related peptidase 1,KLK1,也稱為 tissue kallikrein)是一種廣泛存在人體組織中的絲氨酸蛋白酶(serine protease)。而激肽釋放酶抑制蛋白(kallistatin)是一種絲氨酸蛋白酶抑制劑 (serine protease inhibitor) 主要由肝臟分泌,然後快速進入血液循環系統,會與激肽釋放酶-1形成複合物,進而抑制激肽釋放酶-1的活性。在本文第一部分,我們將探討激肽釋放酶-1和激肽釋放酶抑制蛋白在流行性感冒病毒的感染中所扮演的角色。我們指出激肽釋放酶-1和激肽釋放酶抑制蛋白在血球凝集素蛋白切割和發炎反應的影響,會改變流行性感冒病毒的病理現象。我們發現在流行性感冒病毒感染的小鼠肺部中,激肽釋放酶-1和激肽釋放酶抑制蛋白的表現量失衡。激肽釋放酶-1會切割流感病毒的血球凝集素並增加流感病毒的製造。相反地,激肽釋放酶抑制蛋白可藉由抑制激肽釋放酶-1的活性來降低血球凝集素蛋白的切割和流感病毒的製造。被激肽釋放酶抑制蛋白基因(kallistatin gene)所轉導(transduce)的細胞,會分泌激肽釋放酶抑制蛋白於細胞外,使細胞較能扺抗流行性感冒病毒的感染。再者,有經由激肽釋放酶抑制蛋白基因傳送後小鼠的會有較低的流感病毒量,發炎反應和肺部損傷,而降低死亡率。第二部分,我們將確認血管內皮生長因子(vascular endothelial growth factor, VEGF)在流行性感冒病毒致病機轉所扮演的角色。我們指出流感病毒的感染會抑制血管內皮生長因子的生成。流感病毒的感染會降低小鼠初生的肺纖維母細胞和正常人類肺支氣管上皮細胞株(NL-20)的血管內皮生長因子表現,但卻不會降低在第一型干擾素(interferon, IFN)缺陷的細胞(Vero cells) 的血管內皮生長因子表現。此外,我們顯示在正常人類肺支氣管上皮細胞株的實驗中聚肌苷酸胞嘧啶核苷酸[Poly(I:C)]和干擾素(IFN-α)會抑制血管內皮生長因子的表現量。當我們在人類肺支氣管上皮細胞株增加外生型血管內皮生長因子的蛋白或大量表現內生型血管內皮生長因子的基因,發現流感病毒的感染與製造並不會受到血管內皮生長因子的增加而有所影響。然而,在流感病毒感染中,先接種帶有激肽釋放酶抑制蛋白慢病毒(lentiviral vector encoding VEGF, LV-VEGF)的小鼠比先接種帶有綠色螢光蛋白基因(green fluorescent protein)慢病毒(LV-GFP)的小鼠,在肺部沖洗液中具有較少的單核細胞趨化蛋白(monocyte chemoattractant protein-1, MCP-1) 和較多的腫瘤壞死因子(tumor necrosis factor-α, TNF-α)的表現。綜合以上,我們提供了一個新的觀點在抗病毒的免疫反應和新的方法於流行性感冒病毒感染的治療。

    Influenza virus infection is a common contagious respiratory illness in human. Influenza virus usually induces inflammatory responses. Sometimes, it results in serious respiratory failure and tissue injury. Influenza virus undergoes antigenic variation, enabling the virus to evade the immune response of the host and to confer resistance of currently available anti-influenza drugs which target viral M2 protein or neuraminidase. Considerable efforts are still being made to develop novel antiviral drugs for influenza virus. Proteolytic cleavage of the hemagglutinin (HA) by host trypsin-like proteases is required for influenza virus infection. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease in human tissues. Kallistatin, a serine protease inhibitors synthesized mainly in the liver and rapidly secreted into the blood circulation, forms complexes with KLK1 and inhibits its activity. In the first part, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We showed that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. We observed unbalance of KLK1 and kallistatin expression in the lung of mice during influenza infection. KLK1 cleaved HA molecules of influenza virus and consequently enhanced viral production. By contrast, kallistatin reduced HA cleavage and reduced viral production by inhibiting KLK1 ability. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, mice with kallistatin gene delivery had less mortality by reducing viral load, inflammation, and injury in the lung. In the second part, we studied the role of vascular endothelial growth factor (VEGF) in influenza virus pathogenesis. We found that VEGF production was attenuated by influenza virus infection. Influenza virus infection decreased VEGF expression in mouse primary lung fibroblasts and normal bronchial epithelial cells (NL-20 cells), but not in type I interferon (IFN) deficient cells (Vero cells). Moreover, we showed that Poly(I:C) and IFN-α inhibited VEGF production in NL-20 cells. When we exogenously added VEGF protein or endogenously overexpressed VEGF gene in NL-20 cells, VEGF increase did not influence influenza virus infection and production. However, mice pretreated with lentiviral vectors encoding VEGF (LV-VEGF) had less monocyte chemoattractant protein-1 (MCP-1) and more tumor necrosis factor-α (TNF-α) production in bronchoalveolar lavage fluid, compared with mice pretreated with lentiviral vectors encoding green fluorescent protein (LV-GFP) during influenza infection. Collectively, we provide a novel insight in antiviral immune response and a new approach in therapy of influenza virus infection.

    Qualified Certificate I Chinese Abstract II Abstract IV Acknowlegements VI Abbreviations X Introduction 1 Part 1: Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin 7 1.1 Abstract 7 1.2 Introduction 8 1.3 Materials and Methods 11 1.3.1 Materials 11 1.3.2 Methods 12 1.4 Results 19 1.4.1 KLK1 expression is increased, whereas kallistatin expression is reduced in mice during acute influenza virus infection 19 1.4.2 KLK1 cleaves HA of dominant human subtypes (H1, H2, and H3) of influenza virus in the contexts of HA proteins and virus particles 19 1.4.3 Treatment with KLK1 enhances influenza virus production in vitro 20 1.4.4 Kallistatin inhibits HA cleavage and reduces influenza virus production in vitro 21 1.4.5 Cells transduced with the kallistatin gene are more resistant to influenza virus infection 22 1.4.6 Treatment with lentiviral vectors expressing kallistatin protects mice against lethal influenza virus challenge and alleviates lung inflammation 22 1.5 Discussion 24 Part 2: Role of vascular endothelial growth factor in anti-influenza virus responses 30 2.1 Abstract 30 2.2 Introduction 31 2.3 Materials and Methods 34 2.3.1 Materials 34 2.3.2 Methods 35 2.4 Results 40 2.4.1 VEGF protein expression is reduced in mice infected with influenza virus 40 2.4.2 Levels of VEGF are decreased in influenza virus-infected cells 40 2.4.3 Type I IFN receptor signaling suppresses VEGF expression 41 2.4.4 Effect of VEGF on influenza virus infection and production 42 2.4.5 LV-VEGF pretreatment reduces influenza symptoms of mice 42 2.5 Discussion 44 Conclusion 48 References 49 Figure Legends 61 Appendix 82

    Abadie Y, Bregeon F, Papazian L, Lange F, Chailley-Heu B, Thomas P, Duvaldestin P, Adnot S, Maitre B, Delclaux C (2005) Decreased VEGF concentration in lung tissue and vascular injury during ARDS. Eur Respir J. 25: 139-146

    Abe M, Tahara M, Sakai K, Yamaguchi H, Kanou K, Shirato K, Kawase M, Noda M, Kimura H, Matsuyama S, Fukuhara H, Mizuta K, Maenaka K, Ami Y, Esumi M, Kato A, Takeda M (2013) TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol. 87: 11930-11935

    Akaike T, Molla A, Ando M, Araki S, Maeda H (1989) Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice. J Virol. 63: 2252-2259

    Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res. 153: 347-358

    Barbey-Morel CL, Oeltmann TN, Edwards KM, Wright PF (1987) Role of respiratory tract proteases in infectivity of influenza A virus. J Infect Dis. 155: 667-672

    Barnett JK, Cruse LW, Proud D (1990) Kinins are generated in nasal secretions during influenza A infections in ferrets. Am Rev Respir Dis. 142: 162-166

    Beppu Y, Imamura Y, Tashiro M, Towatari T, Ariga H, Kido H (1997) Human mucus protease inhibitor in airway fluids is a potential defensive compound against infection with influenza A and Sendai viruses. J Biochem. 121: 309-316

    Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 44: 1-80

    Borgono CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 4: 876-890

    Bottcher-Friebertshauser E, Freuer C, Sielaff F, Schmidt S, Eickmann M, Uhlendorff J, Steinmetzer T, Klenk HD, Garten W (2010) Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol. 84: 5605-5614

    Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 80: 9896-9898

    Buchweitz JP, Karmaus PW, Harkema JR, Williams KJ, Kaminski NE (2007) Modulation of airway responses to influenza A/PR/8/34 by Delta9-tetrahydrocannabinol in C57BL/6 mice. J Pharmacol Exp Ther. 323: 675-683

    Chai KX, Chen LM, Chao J, Chao L (1993) Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in Escherichia coli. J Biol Chem. 268: 24498-24505

    Chao J, Jin L, Chen LM, Chen VC, Chao L (1996) Systemic and portal vein delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hum Gene Ther. 7: 901-911

    Chao J, Schmaier A, Chen LM, Yang Z, Chao L (1996) Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med. 127: 612-620

    Chao J, Stallone JN, Liang YM, Chen LM, Wang DZ, Chao L (1997) Kallistatin is a potent new vasodilator. J Clin Invest. 100: 11-17

    Chao J, Tillman DM, Wang MY, Margolius HS, Chao L (1986) Identification of a new tissue-kallikrein-binding protein. Biochem J. 239: 325-331

    Chen BC, Yu CC, Lei HC, Chang MS, Hsu MJ, Huang CL, Chen MC, Sheu JR, Chen TF, Chen TL, Inoue H, Lin CH (2004) Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J Immunol. 173: 5219-5228

    Chen LM, Chao L, Mayfield RK, Chao J (1990) Differential interactions of human kallikrein-binding protein and alpha 1-antitrypsin with human tissue kallikrein. Biochem J. 267: 79-84

    Chen VC, Chao L, Chao J (2000) Reactive-site specificity of human kallistatin toward tissue kallikrein probed by site-directed mutagenesis. Biochimica et biophysica acta. 1479: 237-246

    Chen VC, Chao L, Chao J (2000) Roles of the P1, P2, and P3 residues in determining inhibitory specificity of kallistatin toward human tissue kallikrein. J Biol Chem. 275: 38457-38466

    Christiansen SC, Eddleston J, Bengtson SH, Jenkins GR, Sarnoff RB, Turner RB, Gwaltney JM, Jr., Zuraw BL (2008) Experimental rhinovirus infection increases human tissue kallikrein activation in allergic subjects. Int Arch Allergy Immunol. 147: 299-304

    Christiansen SC, Proud D, Sarnoff RB, Juergens U, Cochrane CG, Zuraw BL (1992) Elevation of tissue kallikrein and kinin in the airways of asthmatic subjects after endobronchial allergen challenge. Am Rev Respir Dis. 145: 900-905

    Corne J, Chupp G, Lee CG, Homer RJ, Zhu Z, Chen Q, Ma B, Du Y, Roux F, McArdle J, Waxman AB, Elias JA (2000) IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. J Clin Invest. 106: 783-791

    De Clercq E (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5: 1015-1025

    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 29: 313-326

    Farkas L, Farkas D, Ask K, Moller A, Gauldie J, Margetts P, Inman M, Kolb M (2009) VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest. 119: 1298-1311

    Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs. 209-231

    Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, Rapp UR, Ludwig S (2000) Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem. 275: 8307-8314

    Galloway SE, Reed ML, Russell CJ, Steinhauer DA (2013) Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog. 9: e1003151

    Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology 115: 361-374

    Goettig P, Magdolen V, Brandstetter H (2010) Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie. 92: 1546-1567

    Goto H, Wells K, Takada A, Kawaoka Y (2001) Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J Virol. 75: 9297-9301

    Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 9: 4189-4195

    Gutterman JU (1994) Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci U S A. 91: 1198-1205

    Hamilton BS, Whittaker GR (2013) Cleavage activation of the human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. J Biol Chem. 288:17399-407.

    Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R (2003) Convergence of the NF-kappaB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann N Y Acad Sci. 1010: 237-248

    Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 56: 549-580

    Hussell T, Pennycook A, Openshaw PJ (2001) Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur J Immunol. 31: 2566-2573

    Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol. 14: 315-328

    Julkunen I, Melen K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S (2000) Inflammatory responses in influenza A virus infection. Vaccine 19 Suppl 1: S32-37

    Kanazawa H, Hirata K, Yoshikawa J (2003) Imbalance between vascular endothelial growth factor and endostatin in emphysema. Eur Respir J. 22: 609-612

    Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol. 22: 657-664

    Kido H, Sakai K, Kishino Y, Tashiro M (1993) Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett. 322: 115-119

    Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68: 426-439

    Koyama S, Sato E, Haniuda M, Numanami H, Nagai S, Izumi T (2002) Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med. 166: 382-385

    Kuo PL, Hsu YL, Huang MS, Chiang SL, Ko YC (2011) Bronchial epithelium-derived IL-8 and RANTES increased bronchial smooth muscle cell migration and proliferation by Kruppel-like factor 5 in areca nut-mediated airway remodeling. Toxicol Sci. 121: 177-190

    Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440-454

    Lazarowitz SG, Goldberg AR, Choppin PW (1973) Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56: 172-180

    Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, Kang MJ, Cohn L, Kim YK, McDonald DM, Elias JA (2004) Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 10: 1095-1103

    Lin WC, Chen CW, Huang YW, Chao L, Chao J, Lin YS, Lin CF (2015) Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis. Sci Rep. 5: 12463

    Lin WC, Lu SL, Lin CF, Chen CW, Chao L, Chao J, Lin YS (2013) Plasma kallistatin levels in patients with severe community-acquired pneumonia. Crit Care. 17: R27

    Lu SL, Tsai CY, Luo YH, Kuo CF, Lin WC, Chang YT, Wu JJ, Chuang WJ, Liu CC, Chao L, Chao J, Lin YS (2013) Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from group a streptococcal infection. Antimicrob Agents Chemother. 57: 5366-5372

    Luo LY, Jiang W (2006) Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol Chem. 387: 813-816

    Ma B, Dela Cruz CS, Hartl D, Kang MJ, Takyar S, Homer RJ, Lee CG, Elias JA (2011) RIG-like helicase innate immunity inhibits vascular endothelial growth factor tissue responses via a type I IFN-dependent mechanism. Am J Respir Crit Care Med. 183: 1322-1335

    Maharaj AS, Saint-Geniez M, Maldonado AE, D'Amore PA (2006) Vascular endothelial growth factor localization in the adult. Am J Pathol. 168: 639-648

    Matikainen S, Siren J, Tissari J, Veckman V, Pirhonen J, Severa M, Sun Q, Lin R, Meri S, Uze G, Hiscott J, Julkunen I (2006) Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol 80: 3515-3522

    Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F (2010) Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 84: 12658-12664

    Meager A (1999) Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev. 10: 27-39

    Medford AR, Millar AB (2006) Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or paradigm? Thorax. 61: 621-626

    Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Moller A, Jacobsen H, Kirchner H (1986) Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323: 816-819

    Mian MF, Stampfli MR, Mossman KL, Ashkar AA (2009) Cigarette smoke attenuation of poly I:C-induced innate antiviral responses in human PBMC is mainly due to inhibition of IFN-beta production. Mol Immunol. 46: 821-829

    Miao RQ, Agata J, Chao L, Chao J (2002) Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood 100: 3245-3252

    Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, Imai Y (2013) The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153: 112-125

    Murakami M, Towatari T, Ohuchi M, Shiota M, Akao M, Okumura Y, Parry MA, Kido H (2001) Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur J Biochem. 268: 2847-2855

    Newton R, Eddleston J, Haddad el B, Hawisa S, Mak J, Lim S, Fox AJ, Donnelly LE, Chung KF (2002) Regulation of kinin receptors in airway epithelial cells by inflammatory cytokines and dexamethasone. Eur J Pharmacol. 441: 193-202

    Nishiyama K, Yao K, Iguci Y, Yamamoto K, Suzuki T, Sato K, Okamoto M, Majima M (2001) Change in tissue kallikrein level in nasal wash after the administration of oxatomide in patients with nasal allergy. Am J Rhinol. 15: 105-108

    Ovcharenko AV, Zhirnov OP (1994) Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice. Antiviral Res. 23: 107-118

    Palese P (2004) Influenza: old and new threats. Nat Med. 10: S82-87

    Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD (1996) Bradykinin stimulates NF-kappaB activation and interleukin 1beta gene expression in cultured human fibroblasts. J Clin Invest. 98: 2042-2049

    Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 4: e1000115

    Pirhonen J, Sareneva T, Kurimoto M, Julkunen I, Matikainen S (1999) Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol. 162: 7322-7329

    Prassas I, Eissa A, Poda G, Diamandis EP (2015) Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov. 14: 183-202

    Proud D, Kaplan AP (1988) Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 6: 49-83

    Raig ET, Jones NB, Varker KA, Benniger K, Go MR, Biber JL, Lesinski GB, Carson WE, 3rd (2008) VEGF secretion is inhibited by interferon-alpha in several melanoma cell lines. J Interferon Cytokine Res. 28: 553-561

    Riese RJ, Finn PW, Shapiro SD (2004) Influenza and asthma: adding to the respiratory burden. Nat Immunol. 5: 243-244

    Rothbarth PH, Kempen BM, Sprenger MJ (1995) Sense and nonsense of influenza vaccination in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 151: 1682-1685; discussion 1685-1686

    Scheiblauer H, Reinacher M, Tashiro M, Rott R (1992) Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis. 166: 783-791

    Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol. 79: 6441-6448

    Seemungal T, Harper-Owen R, Bhowmik A, Moric I, Sanderson G, Message S, Maccallum P, Meade TW, Jeffries DJ, Johnston SL, Wedzicha JA (2001) Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 164: 1618-1623

    Shaw JL, Diamandis EP (2007) Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem. 53: 1423-1432

    Shen B, Hagiwara M, Yao YY, Chao L, Chao J (2008) Salutary effect of kallistatin in salt-induced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 51: 1358-1365

    Shi X, Shi Z, Huang H, Zhu H, Zhu H, Ju D, Zhou P (2013) PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl Microbiol Biotechnol. 97: 10025-10033

    Shiau AL, Teo ML, Chen SY, Wang CR, Hsieh JL, Chang MY, Chang CJ, Chao J, Chao L, Wu CL, Lee CH (2010) Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin. BMC Cancer. 10: 245

    Sotiropoulou G, Pampalakis G (2012) Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci. 33: 623-634

    Sotiropoulou G, Pampalakis G, Diamandis EP (2009) Functional roles of human kallikrein-related peptidases. J Biol Chem. 284: 32989-32994

    Sriwilaijaroen N, Suzuki Y (2012) Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci. 88: 226-249

    Stadnicki A, Mazurek U, Plewka D, Wilczok T (2003) Intestinal tissue kallikrein-kallistatin profile in inflammatory bowel disease. Int Immunopharmacol. 3: 939-944

    Sun X, Tse LV, Ferguson AD, Whittaker GR (2010) Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol. 84: 8683-8690

    Swiergiel AH, Dunn AJ (1999) The roles of IL-1, IL-6, and TNFalpha in the feeding responses to endotoxin and influenza virus infection in mice. Brain Behav Immun. 13: 252-265

    Tan WC, Xiang X, Qiu D, Ng TP, Lam SF, Hegele RG (2003) Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am J Med. 115: 272-277

    Tashiro M, Klenk HD, Rott R (1987) Inhibitory effect of a protease inhibitor, leupeptin, on the development of influenza pneumonia, mediated by concomitant bacteria. J Gen Virol. 68: 2039-2041

    Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146: 980-991

    Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF, Flores SC (2003) Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol. 29: 88-97

    Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal. 9: 731-739

    Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem. 264: 85-97

    Van Reeth K (2000) Cytokines in the pathogenesis of influenza. Vet Microbiol. 74: 109-116

    Vlahos R, Stambas J, Bozinovski S, Broughton BR, Drummond GR, Selemidis S (2011) Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 7: e1001271

    von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 6: 967-974

    Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ. 10: 45-65

    Wang CR, Chen SY, Shiau AL, Wu CL, Jou IM, Chao L, Chao J (2007) Upregulation of kallistatin expression in rheumatoid joints. J Rheumatol. 34: 2171-2176

    Wang CR, Chen SY, Wu CL, Liu MF, Jin YT, Chao L, Chao J (2005) Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum. 52: 1319-1324

    Wedzicha JA (2004) Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 1: 115-120

    Xiao HB, Zhou WY, Chen XF, Mei J, Lv ZW, Ding FB, Li GQ, Zhong H, Bao CR (2012) Interferon-beta efficiently inhibited endothelial progenitor cell-induced tumor angiogenesis. Gene Ther. 19: 1030-1034

    Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, Wang JR, Wang CH, Wu CL, Shiau AL (2011) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol. 85: 10010-10020

    Yin H, Gao L, Shen B, Chao L, Chao J (2010) Kallistatin inhibits vascular inflammation by antagonizing tumor necrosis factor-alpha-induced nuclear factor kappaB activation. Hypertension 56: 260-267

    Zhang Y, Jiang G, Sauler M, Lee PJ (2013) Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. FASEB J. 27: 4041-4058

    Zheng H, Qian J, Carbone CJ, Leu NA, Baker DP, Fuchs SY (2011) Vascular endothelial growth factor-induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood 118: 4003-4006

    Zhirnov OP (1987) High protection of animals lethally infected with influenza virus by aprotinin-rimantadine combination. J Med Virol. 21: 161-167

    Zhirnov OP, Ikizler MR, Wright PF (2002) Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. J Virol. 76: 8682-8689

    Zhirnov OP, Ovcharenko AV, Bukrinskaya AG (1982) Proteolytic activation of influenza WSN virus in cultured cells is performed by homologous plasma enzymes. J Gen Virol. 63: 469-474

    Zhirnov OP, Ovcharenko AV, Bukrinskaya AG (1985) Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. J Gen Virol. 66: 1633-1638

    Zhou GX, Chao L, Chao J (1992) Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem. 267: 25873-25880

    無法下載圖示 校內:2020-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE