簡易檢索 / 詳目顯示

研究生: 周安柏
Chou, An-Po
論文名稱: 分析功能性梯度壓電樑之黏彈響應
Analysis of viscoelastic response of functionally graded piezoelectric beams
指導教授: 林建宏
Lin, Chien-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 48
中文關鍵詞: 黏彈力學壓電材料功能性梯度材料微觀力學
外文關鍵詞: viscoelastic, piezoelectric, functionally graded material, micromechanics
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對據有黏彈響應的功能性梯度壓電複合材料梁分析及模擬,藉由數
    值方法來分析並建構模型以預測整體的行為。常見的應用為量子穿隧顯微鏡以
    及原子力顯微鏡內的位移感測器的壓電材料,因在實際應用時,顯微鏡操作時
    間較長,使得最後成像的圖片因為潛變而扭曲變形,其中壓電材料的潛變即在
    本文有討論。而功能性梯度材料因為能夠避免明顯的分層而介質中間沒有明顯
    的分層,較能夠在長時間的運作下不容易產生破裂及剝離分開。
    本研究用微觀力學來探討複合材料所帶來的影響,藉由連接板殼理論來探
    討整體複合梁的響應。材料參數也是藉由文獻提到的實驗數據,加以校準出相
    對應的材料參數,並藉由實驗來加以驗證,最終預測模型的可信度。而參數討
    論則針對前面所提到的潛變問題,以直接探討材料本身以及問題本身,加以討
    論以及思考,試圖尋找可能的解決方式而非像絕大部分的文獻回顧的學者,以
    自動控制的方法去改善這個狀況。

    This research is based on functionally graded material for analyzing the nonlinear and time-dependent response of viscoelastic piezoelectric material, such as the matrix is viscoelastic and the reinforcing material reinforcement is barium titanate which is assumed as a linear material. But However, due to the time-dependent viscoelastic matrix, the composite behavior is creep or relaxation, so the constitutive relations used are nonlinear and time-dependent. The time-dependent problem here can be solved by the time integration algorithm recursive method which is proposed by Muliana, 2002. The Prony series of piezoelectric materials are calibrated from the experimental data available in the literature by Zhou, 2005. By utilizing the micromechanics model which is the simplified unit-cell model and laminate theory to analyze the deflection of the actuator under cyclic electric voltage loading, the differences between with and without time-effect or viscoelasticity are presented against experimental validation. The parametric study with various dimensions and several sets of the material compositions of the functionally graded piezoelectric beams actuator and the effect of different frequencies are presented.

    ABSTRACT I 中文摘要 II ACKNOWLEDGEMENT III LIST OF FIGURES VI LIST OF TABLES IX LIST OF SYMBOLS X CHAPTER I 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Piezoelectric materials 2 1.2.2 Micromechanics 4 1.2.3 Multilayer actuator 5 1.3 Research Objective 5 CHAPTER II 6 CONSTITUTIVE EQUATIONS AND MICROMECHANICS 6 2.1 Piezoelectric ceramics 6 2.2 Micromechanics 12 2.3 Laminate theory 17 2.4 The procedure of analysis 20 CHAPTER III 22 CALIBRATION OF VISCOELASTIC PIEZOELECTRIC CERAMICS 22 3.1 Pre-poled PZT 22 3.2 Unpoled PZT 24 CHAPTER IV 26 RESULTS AND DISCUSSIONS 26 4.1 Experimental validations 26 4.2 Parameter studies 32 4.3 Time effects 36 4.4 Other micromechanics methods 36 CHAPTER V 39 CONCLUSIONS AND FUTURE RESEARCH 39 5.1 Conclusions 39 5.2 Future research 40 APPENDIX 41 REFERENCE 46

    [1] Boltzmann, L., 1874. Zur Theorie der elastischen Nachwirkung [Concerning the theory of the elastic aftereffect]. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, 70 (2): 275–306, 1874.
    [2] Markovitz, H., 1975. Superposition in rheology. In Journal of Polymer Science: Polymer Symposia (Vol. 50, No. 1, pp. 431-456). New York: Wiley Subscription Services, Inc., A Wiley Company.
    [3] Zanotto, E.D., 1998. Do cathedral glasses flow?. American Journal of Physics, 66(5), pp.392-395.
    [4] Chen, P.H., Peng, H.Y., Liu, H.Y., Chang, S.L., Wu, T.I. and Cheng, C.H., 1999. Pressure response and droplet ejection of a piezoelectric inkjet printhead. International Journal of Mechanical Sciences, 41(2), pp.235-248.
    [5] Khan, K.A., Muliana, A.H., Atitallah, H.B. and Ounaies, Z., 2016. Time-dependent and energy dissipation effects on the electromechanical response of PZTs. Mechanics of Materials, 102, pp.74-89.
    [6] Croft, D., Shed, G. and Devasia, S., 2001. Creep, hysteresis, and vibration compensation for piezo actuators: atomic force microscopy application. J. Dyn. Sys., Meas., Control, 123(1), pp.35-43.
    [7] Curie, J. and Curie, P., 1880. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de minéralogie, 3(4), pp.90-93.
    [8] APC International, Ltd. 2019. Physical and Piezoelectric Properties of APC Materials.
    [9] Meitzler, A.H., Tiersten, H., Warner, A., Berlincourt, D., Couqin, G. and Welsh III, F., 1987. IEEE Standard on Piezoelectricity “ANSI/IEEE Std 176–1987”. The Institute of Electrical and Electronics Engineers Inc.
    [10] Tiersten, H.F., 1993. Electroelastic equations for electrode thin plates subject to large driving voltages. Journal of Applied Physics, 74(5), pp.3389-3393.
    [11] Sodano, H.A., Inman, D.J. and Park, G., 2005. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of intelligent material systems and structures, 16(10), pp.799-807.
    [12] Park, S.E. and Shrout, T.R., 1997. Ultrahigh strain and piezoelectric behavior in relaxor-based ferroelectric single crystals. Journal of Applied Physics, 82(4), pp.1804-1811.
    [13] Zhou, D. and Kamlah, M., 2006. Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta materialia, 54(5), pp.1389-1396.
    [14] Voigt, W., 1889. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), pp.573-587.
    [15] Reuss, A., 1929. Calculation of the Yield point of mixed crystals from plasticity conditions for single crystals. Angew Math Mechanik, 9, pp. 49-58.
    [16] Hashin, Z. and Shtrikman, S., 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), pp.127-140.
    [17] Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226), pp.376-396.
    [18] Mori, T. and Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgical, 21(5), pp.571-574.
    [19] Hill, R., 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), pp.213-222.
    [20] Bruggeman, V.D., 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physik, 416(7), pp.636-664.
    [21] Aboudi, J., 1991. Micro-failure criteria for coated-fiber composites. Journal of reinforced plastics and composites, 10(2), pp.146-157.
    [22] Lin, C.H. and Muliana, A., 2013. Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mechanica, 224(7), pp.1471-1492.
    [23] Yoshikawa, S. and Shrout, T., 1993. Multilayer piezoelectric actuators-structures and reliability. In 34th Structures, Structural Dynamics and Materials Conference (p. 1711).
    [24] Dogan, A., Uchino, K., and Newnham, R.E., 1997. Composite piezoelectric transducer with truncated conical endcaps" cymbal". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(3), pp.597-605.
    [25] Bauer, A. and Moller, F., 1994. Piezo actuator special design. Fraunhofer Inst.(Jena, Germany), pp.128-132.
    [26] Takagi, K., Li, J.F., Yokoyama, S., Watanabe, R., Almajid, A. and Taya, M., 2002. Design and fabrication of functionally graded PZT/Pt piezoelectric bimorph actuator. Science and Technology of Advanced Materials, 3(2), p.217.
    [27] Alexander, P.W., Brei, D. and Halloran, J.W., 2005, May. The fabrication and material characterization of PZT based functionally graded piezoceramics. In Smart Structures and Materials 2005: Smart Structures and Integrated Systems (Vol. 5764, pp. 57-70).
    [28] Kao, K.C., 2004. Ferroelectrics, piezoelectrics, and pyroelectrics. Dielectric phenomena in solids, 4, pp.213-282.
    [29] Khan, K.A., Muliana, A.H., Atitallah, H.B. and Ounaies, Z., 2016. Time-dependent and energy dissipation effects on the electromechanical response of PZTs. Mechanics of Materials, 102, pp.74-89.
    [30] Haj-Ali, R.M. and Muliana, A.H., 2003. A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials. International Journal of Solids and Structures, 40(5), pp.1037-1057.
    [31] Schapery, R.A., 1969. On the characterization of nonlinear viscoelastic materials. Polymer Engineering & Science, 9(4), pp.295-310.
    [32] Paley, M. and Aboudi, J., 1992. Micromechanical analysis of composites by the generalized cells model. Mechanics of Materials, 14(2), pp.127-139.
    [33] Aboudi, J., Arnold, S.M. and Bednarcyk, B.A., 2013. Micromechanics of composite materials: a generalized multiscale analysis approach. Chapter 5. Butterworth-Heinemann.
    [34] Ronald F. Gibson, 1994. Principles of composite material mechanics. Chapter 7. McGraw-Hill.
    [35] Bauchau O.A., Craig J.I. 2009. Structural Analysis: Solid Mechanics and Its Applications. Chapter 5. Springer, Dordrecht.
    [36] Almajid, A., Taya, M. and Hudnut, S., 2001. Analysis of out-of-plane displacement and stress field in a piezo composite plate with functionally graded microstructure. International Journal of Solids and Structures, 38(19), pp.3377-3391.
    [37] Lin, C.H. and Muliana, A., 2015. Nonlinear electromechanical responses of functionally graded piezoelectric beams. Composites Part B: Engineering, 72, pp.53-64.
    [38] Shahab, S., Zhao, S. and Erturk, A., 2018. Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting. Energy Technology, 6(5), pp.935-942.

    下載圖示 校內:2024-08-02公開
    校外:2024-08-02公開
    QR CODE