研究生: |
賴致遠 Lai, Jr-Yuan |
---|---|
論文名稱: |
化學浴沉積法合成氧化鋅奈米線及其特性分析 Chemical bath deposition and properties of ZnO nanowires |
指導教授: |
吳季珍
Wu, Jih-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 化學浴沉積法 、奈米線 、氧化鋅 、色素增感太陽能電池 |
外文關鍵詞: | dye-sensitized solar cell, zinc oxide, nanowires, chemical bath deposition |
相關次數: | 點閱:88 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學浴沉積法(chemical bath deposition)成長氧化鋅奈米線陣列於透明導電基板上,再將合成好的氧化鋅奈米線陣列做為陽極組裝成色素增感太陽能電池(dye-sensitized solar cell),並量測其效率。透過改變化學浴沉積法的反應條件,探討包括濃度、溫度與反應時間等變數對氧化鋅晶體成長的影響。當反應濃度降低與溫度提高,所合成之氧化鋅晶體的長徑比提高。批次式化學浴沉積在進行ㄧ段時間後便會達到平衡,以此時間作為多批次反應的成長週期有最好的成長效率。透過XRD和TEM的分析,證實不同濃度與不同溫度下所成長的氧化鋅奈米線都是屬於單晶結構的纖維鋅礦結構,並且具有沿[001]面成長的特性。PL與CL圖譜則顯示出反應濃度越高綠光峰的強度越小。不同長度的氧化鋅奈米線陣列藉由多批次法被合成出來,並比較不同長度下氧化鋅奈米線陣列所組裝的色素增感太陽能電池的效率。隨著奈米線的長度越長,電池所產生的光電流越大,而電池的開路電壓與填充因子則沒有太大的改變,這表示所合成的奈米線具有良好的電性。將氧化鋅的奈米顆粒添加至氧化鋅奈米線陣列之中,由氧化鋅奈米顆粒所貢獻的表面積可以增加電池的色素吸附量,產生更多的光電流,使電池的效率提高。
ZnO nanowire arrays have been synthesized on transparent conducting oxide substrates using chemical bath deposition (CBD). The effects of the concentration, reaction temperature and reaction period on the nanowire growth have been investigated in this study. The aspect ratios of the ZnO nanowires are enhanced when the concentration is decreased or the temperature is increased. Structure analyses of the ZnO nanowires reveal that the nanowires possesses single crystalline wurtzite structure and grows along the c-axis direction. PL and CL spectra show that the green band emission is enhanced when the reaction concentrations of the precursors are decreased. The ZnO nanowire arrays with various lengths grown by multiple bathes are further employed to be the anode of the dye-sensitized solar cells (DSSCs). The efficiencies of the nanowires DSSCs are enhanced as the length of the nanowire is increased. Further loading of the ZnO nanoparticles into the nanowires results in the efficiency enhancement due to the increase of the surface area of the anode for dye absorption.
[1] Oelkrug D, Egelhaaf HJ, Gierschner J, Tompert A,
SYNTHETIC METALS 76 (1-3), 249-253,1996.
[2] Muller A, Beckmann E, Bogge H, Schmidtmann M, Dress A, ANGEWANDTE CHEMIE- INTERNATIONAL EDITION 41 (7), 1162, 2002.
[3] Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW,
Sato N, Tagaya Y, Morris JC, Waldmann TA, JOURNAL OF THE NATIONAL CANCER
INSTITUTE 96 (9), 703-708, 2004.
[4] Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU, NANOTECHNOLOGY 15
(1), 48-54, 2004.
[5] Law M, Greene LE, Johnson JC, Saykally R, Yang PD,
NATURE MATERIALS 4 (6), 455-459, 2005.
[6] Beermann N, Vayssieres L , Lindquist SE , Hagfeldt AJ, PHYS. CHEM 105,
3350-3352 , 2001.
[7] Triboulet R, PROC. SPIE 1-8, 4412, 2001.
[8] Huang MH, Mao D, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P,
SIENCE 292, 1897, 2001.
[9] Yamazoe N, SENSORS ACTUATORS B 5, 7, 1991.
[10] Agarwal G, Speyr RF, J. ELECTROCHEM. SOC. 145, 2920-2925, 1998.
[11] Hu JT, Odom TW, Lieber CM, ACC. CHEM. RES. 32, 435, 1999.
[12] Dong LF, Jiao J, Tuggle DW, Petty JM, Elliff SA, Coulter M
APPLIED PHYSICS LETTERS 82, 1096-1098, 2003.
[13] Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P, ADV. MATER.13, 113,
2001.
[14] Zheng MJ, Zhang LD, Li GH, Shen WZ, CHEM. PHYS. LETT. 363, 123, 2002. [15] Wu JJ, Liu SC, ADV. MATER.14, 215, 2002.
[16] Yamambi S, Imai H, J. MATER. CHEM. 12, 3773-3778, 2002.
[17] Kim HM, Cho YH, Lee H, Kim SII, Ryu SR, Kim DY, Kang TW, Chung KS, NANO
LETTERS 14, 1059, 2003.
[18] www.taipower.com.tw
[19] unfccc.int/resource/docs/convkp/kpeng.html
[20] Bernardi DM, Verbrugge MW, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 139 ,
2477-2491, 1992.
[21] www.iea.org
[22] Donnay JDH, Harker D, AMER. MINERAL. 22, 446, 1937.
[23] Hartman P, Perdok WG, ACTA CRYSTALLOGR. 8, 525, 1955.
[24] Zhong WZ, Liu GZ, SCI. CHINA (B) 24, 394, 1994.
[25] Li WJ, Shi EW, Zhong WZ, Yin ZW, JOURNAL OF CRYSTAL GROWTH 203, 186-196,
1999.
[26] Vayssieres L, ADV. MATER. 15, 464, 2003.
[27] Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D,
ADV. MATER. 14, 1221, 2002.
[28] Tamabi S, Imai H, J. MATER. CHEM. 12, 3773, 2002.
[29] Hiruma K, APPL. PHYS. LETT. 59, 431, 1991.
[30] Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P, ADV. MATER. 13, 113-
116, 2001.
[31] Wu JJ, Liu SS, J. PHYS. CHEM. B, 106, 9546, 2002.
[32] Xia Y, Yang P, ADV. MATER. 15, 353, 2003.
[33] www.vicphysics.org/events/stav2005.html
[34] ja.wikipedia.org/wiki/Solar_energy
[35] www.cooper.edu
[36] Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G, ADV. MATER. 17,
1512-1515, 2005.
[37] Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Gratzel M
NATURE MATERIALS 2, 402-407, 2003.
[38] Zeng TY, Howerton BS, ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL
SOCIETY 229, U1090-U1090 , 2005.
[39] www.cchem.berkeley.edu/pagrp
[40] Gratzel M, NATURE, 15, 414, 2001.
[41] en.wikipedia.org/wiki/Solar_cell
[42] 汪建民,材料分析,中國材料科學學會, 1998。
[43] 鄭信民,林麗娟,工業材料 181, 100-108, 2002。
[44] Wu LL, Wu Y, Pan X, Kong F, OPTICAL MATERIALS 28, 418-422, 2006.
[45] Fonoberov VA, Balandin AA, APPL. PHYS. LETT. 85, 5971, 2004.