簡易檢索 / 詳目顯示

研究生: 賴致遠
Lai, Jr-Yuan
論文名稱: 化學浴沉積法合成氧化鋅奈米線及其特性分析
Chemical bath deposition and properties of ZnO nanowires
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 化學浴沉積法奈米線氧化鋅色素增感太陽能電池
外文關鍵詞: dye-sensitized solar cell, zinc oxide, nanowires, chemical bath deposition
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學浴沉積法(chemical bath deposition)成長氧化鋅奈米線陣列於透明導電基板上,再將合成好的氧化鋅奈米線陣列做為陽極組裝成色素增感太陽能電池(dye-sensitized solar cell),並量測其效率。透過改變化學浴沉積法的反應條件,探討包括濃度、溫度與反應時間等變數對氧化鋅晶體成長的影響。當反應濃度降低與溫度提高,所合成之氧化鋅晶體的長徑比提高。批次式化學浴沉積在進行ㄧ段時間後便會達到平衡,以此時間作為多批次反應的成長週期有最好的成長效率。透過XRD和TEM的分析,證實不同濃度與不同溫度下所成長的氧化鋅奈米線都是屬於單晶結構的纖維鋅礦結構,並且具有沿[001]面成長的特性。PL與CL圖譜則顯示出反應濃度越高綠光峰的強度越小。不同長度的氧化鋅奈米線陣列藉由多批次法被合成出來,並比較不同長度下氧化鋅奈米線陣列所組裝的色素增感太陽能電池的效率。隨著奈米線的長度越長,電池所產生的光電流越大,而電池的開路電壓與填充因子則沒有太大的改變,這表示所合成的奈米線具有良好的電性。將氧化鋅的奈米顆粒添加至氧化鋅奈米線陣列之中,由氧化鋅奈米顆粒所貢獻的表面積可以增加電池的色素吸附量,產生更多的光電流,使電池的效率提高。

    ZnO nanowire arrays have been synthesized on transparent conducting oxide substrates using chemical bath deposition (CBD). The effects of the concentration, reaction temperature and reaction period on the nanowire growth have been investigated in this study. The aspect ratios of the ZnO nanowires are enhanced when the concentration is decreased or the temperature is increased. Structure analyses of the ZnO nanowires reveal that the nanowires possesses single crystalline wurtzite structure and grows along the c-axis direction. PL and CL spectra show that the green band emission is enhanced when the reaction concentrations of the precursors are decreased. The ZnO nanowire arrays with various lengths grown by multiple bathes are further employed to be the anode of the dye-sensitized solar cells (DSSCs). The efficiencies of the nanowires DSSCs are enhanced as the length of the nanowire is increased. Further loading of the ZnO nanoparticles into the nanowires results in the efficiency enhancement due to the increase of the surface area of the anode for dye absorption.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄………………………………………………………………VII 圖目錄………………………………………………………………VIII 第一章 緒論................................................................................1 1-1 前言........................................................................................1 1-2 氧化鋅一維奈米結構..........................................................2 1-3 太陽能電池...........................................................................3 1-4 研究動機...............................................................................4 第二章 理論基礎........................................................................6 2-1水溶液成長氧化鋅ㄧ維奈米結構......................................6 2-1-1 氧化鋅結晶的成長特性與機制......................................6 2-1-2 化學浴沉積法....................................................................9 2-2 其他方法成長氧化鋅一維奈米結構.................................11 2-2-1利用材料非等方向性之晶體成長...................................11 2-2-2 以VLS方法成長.................................................................12 2-2-3 以Solution-LS&Solid-LS方法成長....................................13 2-2-4 以奈米級孔洞之模具成長...............................................13 2-3 太陽能電池............................................................................14 2-3-1 基本工作原理.....................................................................14 2-3-2 常見的電池種類.................................................................15 2-3-3 效率分析..............................................................................19 第三章 實驗步驟與研究方法.....................................................22 3-1 實驗設計流程.........................................................................22 3-2 系統設計..................................................................................23 3-2-1 浸鍍法與化學浴沉積法.....................................................23 3-2-2 色素增感太陽能電池..........................................................23 3-3 實驗材料..................................................................................25 3-3-1 化學藥品...............................................................................25 3-3-2 透明導電基板.......................................................................26 3-4 實驗步驟...................................................................................27 3-4-1 基板清洗................................................................................27 3-4-2 浸鍍氧化鋅薄膜....................................................................27 3-4-3 成長氧化鋅奈米線陣列.......................................................27 3-4-4 組裝與量測色素增感太陽能電池......................................28 3-5 分析與鑑定................................................................................28 3-5-1 掃描式電子顯微鏡(SEM).....................................................28 3-5-2 穿透式電子顯微鏡(TEM).....................................................29 3-5-3 X光繞射分析儀(XRD)..........................................................29 3-5-4 光子激發光譜儀(PL).............................................................30 3-5-5 陰極激發光譜儀(CL).............................................................30 第四章 化學浴法成長氧化鋅奈米線............................................31 4-1 基板前處理對氧化鋅奈米線成長的影響...............................31 4-2 反應濃度對氧化鋅奈米線成長的影響...................................34 4-2-1 反應濃度對氧化鋅奈米線形貌的影響................................34 4-2-2 反應濃度對氧化鋅奈米線光學性質的影響........................52 4-2-2a 光子激發光譜儀.....................................................................52 4-2-2b 陰極激發光譜儀.....................................................................54 4-2-3 氧化鋅奈米線之結構分析......................................................55 4-2-3a X光繞射圖譜分析..................................................................55 4-2-3b穿透式電子顯微鏡分析.........................................................57 4-3 反應溫度對氧化鋅奈米線成長的影響....................................59 4-4 反應時間對氧化鋅奈米線成長的影響....................................63 4-5 結論................................................................................................65 第五章 色素增感太陽能電池...........................................................66 5-1 氧化鋅奈米線陣列之色素增感太陽能電池............................66 5-2 氧化鋅奈米線/奈米顆粒之色素增感太陽能電池...................73 5-3 結論75 第六章 總結論.....................................................................................76 第七章 參考文獻.................................................................................77

    [1] Oelkrug D, Egelhaaf HJ, Gierschner J, Tompert A,
    SYNTHETIC METALS 76 (1-3), 249-253,1996.
    [2] Muller A, Beckmann E, Bogge H, Schmidtmann M, Dress A, ANGEWANDTE CHEMIE- INTERNATIONAL EDITION 41 (7), 1162, 2002.
    [3] Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW,
    Sato N, Tagaya Y, Morris JC, Waldmann TA, JOURNAL OF THE NATIONAL CANCER
    INSTITUTE 96 (9), 703-708, 2004.
    [4] Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU, NANOTECHNOLOGY 15
    (1), 48-54, 2004.
    [5] Law M, Greene LE, Johnson JC, Saykally R, Yang PD,
    NATURE MATERIALS 4 (6), 455-459, 2005.
    [6] Beermann N, Vayssieres L , Lindquist SE , Hagfeldt AJ, PHYS. CHEM 105,
    3350-3352 , 2001.
    [7] Triboulet R, PROC. SPIE 1-8, 4412, 2001.
    [8] Huang MH, Mao D, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P,
    SIENCE 292, 1897, 2001.
    [9] Yamazoe N, SENSORS ACTUATORS B 5, 7, 1991.
    [10] Agarwal G, Speyr RF, J. ELECTROCHEM. SOC. 145, 2920-2925, 1998.
    [11] Hu JT, Odom TW, Lieber CM, ACC. CHEM. RES. 32, 435, 1999.
    [12] Dong LF, Jiao J, Tuggle DW, Petty JM, Elliff SA, Coulter M
    APPLIED PHYSICS LETTERS 82, 1096-1098, 2003.
    [13] Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P, ADV. MATER.13, 113,
    2001.
    [14] Zheng MJ, Zhang LD, Li GH, Shen WZ, CHEM. PHYS. LETT. 363, 123, 2002. [15] Wu JJ, Liu SC, ADV. MATER.14, 215, 2002.
    [16] Yamambi S, Imai H, J. MATER. CHEM. 12, 3773-3778, 2002.
    [17] Kim HM, Cho YH, Lee H, Kim SII, Ryu SR, Kim DY, Kang TW, Chung KS, NANO
    LETTERS 14, 1059, 2003.
    [18] www.taipower.com.tw
    [19] unfccc.int/resource/docs/convkp/kpeng.html
    [20] Bernardi DM, Verbrugge MW, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 139 ,
    2477-2491, 1992.
    [21] www.iea.org
    [22] Donnay JDH, Harker D, AMER. MINERAL. 22, 446, 1937.
    [23] Hartman P, Perdok WG, ACTA CRYSTALLOGR. 8, 525, 1955.
    [24] Zhong WZ, Liu GZ, SCI. CHINA (B) 24, 394, 1994.
    [25] Li WJ, Shi EW, Zhong WZ, Yin ZW, JOURNAL OF CRYSTAL GROWTH 203, 186-196,
    1999.
    [26] Vayssieres L, ADV. MATER. 15, 464, 2003.
    [27] Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D,
    ADV. MATER. 14, 1221, 2002.
    [28] Tamabi S, Imai H, J. MATER. CHEM. 12, 3773, 2002.
    [29] Hiruma K, APPL. PHYS. LETT. 59, 431, 1991.
    [30] Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P, ADV. MATER. 13, 113-
    116, 2001.
    [31] Wu JJ, Liu SS, J. PHYS. CHEM. B, 106, 9546, 2002.
    [32] Xia Y, Yang P, ADV. MATER. 15, 353, 2003.
    [33] www.vicphysics.org/events/stav2005.html
    [34] ja.wikipedia.org/wiki/Solar_energy
    [35] www.cooper.edu
    [36] Lévy-Clément C, Tena-Zaera R, Ryan MA, Katty A, Hodes G, ADV. MATER. 17,
    1512-1515, 2005.
    [37] Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Gratzel M
    NATURE MATERIALS 2, 402-407, 2003.
    [38] Zeng TY, Howerton BS, ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL
    SOCIETY 229, U1090-U1090 , 2005.
    [39] www.cchem.berkeley.edu/pagrp
    [40] Gratzel M, NATURE, 15, 414, 2001.
    [41] en.wikipedia.org/wiki/Solar_cell
    [42] 汪建民,材料分析,中國材料科學學會, 1998。
    [43] 鄭信民,林麗娟,工業材料 181, 100-108, 2002。
    [44] Wu LL, Wu Y, Pan X, Kong F, OPTICAL MATERIALS 28, 418-422, 2006.
    [45] Fonoberov VA, Balandin AA, APPL. PHYS. LETT. 85, 5971, 2004.


    下載圖示 校內:2007-08-09公開
    校外:2007-08-09公開
    QR CODE