簡易檢索 / 詳目顯示

研究生: 楊復云
Yang, Fu-Yun
論文名稱: 鏈散射描述法求解控制器及雙自由度控制系統之強健設計
Chain-Scattering Description Approach to Control Synthesis and Robust Design of 2DOF Control Systems
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 131
中文關鍵詞: H2控制鏈散射式描述動態剛性同動控制
外文關鍵詞: H2 control, chain-scattering description, dynamic stiffness, synchronous control
相關次數: 點閱:71下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於鏈散射式描述(chain-scattering description, CSD)求解標準穩定及H2最佳化控制問題。該方法早期被用以求解標準H∞ 問題: 以兩組耦合之鏈散射矩陣配合其J-lossless性質,求出所有滿足成本函數之控制器集合。本研究進一步將此解題架構延伸至求解所有穩定控制器問題以及H2控制問題,整合提出一可同時處理上述三種控制問題之統一解法。在所提出之解題架構下,上述三種控制問題均可以一致化的數學結構加以描述,並只需視問題種類加以限制各鏈散射矩陣之條件,即可合成出滿足不同目標之控制器集合。利用該方法求解控制器合成的好處為過程簡潔且易懂,配合耦合鏈散射矩陣的圖形說明,提供工程背景的設計者能快速理解並應用於不同設計所需的控制器架構。
    在實務應用之設計考量上,本文基於以外擾估測器概念為主的雙自由度控制器,提出混合型雙自由度控制器設計架構。該架構結合了不同的雙自由度控制器的優點,可同時達到高動態剛性以及高強健性能之優點。並以一伺服馬達為例,說明所提出架構之特性以及其設計流程。另一方面,本研究也將外擾估測器的設計概念與同動控制結合,提出一基於多輸入多輸出系統模型的解偶同動架構。實驗結果顯示,所提出之架構可有效降低系統的雙軸同動誤差,驗證了本設計之可行性及實用性。

    This research utilizes the coupled chain-scattering description (CSD) framework to solve both the stabilization and H2 problems. This approach was first investigated for solving the standard H∞ problem, in which the sophisticated mathematics involved inH∞ synthesis can be easily comprehended via constructing two CSD matrices and successive J-lossless coprime factorizations. This research extends the framework to solve the stabilization problem, H2 problem, and the special standard control configuration (SCC) plants. For different constraints on the CSD matrices of each problem, this approach is then said to be a general controller synthesis method. A significant contribution of this method is its transparency and intuitive nature, which provides a systematic control theory and allows practicing control engineers to learn this approach more easily and apply it to advanced control systems. Related graphic network representations are also presented to help explain the entire concept, which will benefit engineering readers.
    With respect to practical designs, a mixed type of 2DOF scheme is proposed which integrates the advantages of different frameworks. This structure can stipulate the design specifications while satisfying dynamic stiffness, and permits intuitive and independent tuning of disturbance rejection as well as tracking performance. Experimental results obtained from an illustrated servo control system are given to demonstrate the effectiveness and feasibility of the proposed control structure and design methodology. Furthermore, the concept of 2DOF design is combined with synchronous motion control. The experimental results demonstrate that the synchronous error can be significantly reduced by the proposed framework.

    1.Introduction 1 1.1 Background ...........................................3 1.2 Contribution and organization of this dissertation... 6 2.Preliminaries of Chain Scattering Description 8 2.1 Preliminaries.........................................8 2.1.1 State-space realizations............................8 2.1.2 Inner and co-inner systems..........................9 2.1.3 J-lossless and dual J-lossless systems..............10 2.1.4 Coprime factorization over RH-infinity..............10 2.1.5 Normalized coprime factorization................... 12 2.1.6 Algebraic Riccati Equation..........................12 2.1.7 State-space formulae for Normalized Coprime Factorization.............................................14 2.2 Linear fractional transformations and chain scattering-matrix description........................................16 2.2.1 Definitions and operations..........................16 2.2.2 Cascaded connection of two CSD matrices.............17 2.2.3 Transformation between LFT and two CSDs.............22 2.2.4 State-space formulae between CSD-matrix and LFT-matrix....................................................23 3.CSD Approach to Control Synthesis 27 3.1 Characterization of all Stabilizing Controllers......28 3.1.1 Method I:Using a right CSD coupled with a left CSD.28 3.1.2 Method II:Using a left CSD coupled with a right CSD.30 3.1.3 State-Space Formulae of Stabilizing Controllers.....32 3.1.4 Stabilization of Special SCC Formulations...........38 3.2 Optimal H2 Controller.................................41 3.2.1 Method I:Using a right CSD coupled with a left CSD. 42 3.2.2 Method II:Using a left CSD coupled with a right CSD.46 3.3 H-infinity Controller.................................47 3.3.1 H-infinity control problem..........................47 3.3.2 Method I:Using a right CSD coupled with a left CSD.49 3.3.3 Method II:Using a left CSD coupled with a right CSD.50 3.3.4 State-Space Formulae of H-infinity Controllers......53 3.3.5 H-inginity Solution of Special SCC Formulations....60 3.4 Example of LQR controller-the state feedback control problem...................................................62 3.5 Summary...............................................64 4.Two-Degree-of-Freedom Controllers 65 4.1 Two-degree-of-freedom controllers.....................65 4.1.1 Two-degree-of-freedom controller with DOB...........68 4.1.2 Two-degree-of-freedom controller with MBDA..........68 4.1.3 Reference feedforward two-degree-of-freedom (RFF-2DOF) controller..........................................69 4.1.4 Model-based RFF- 2DOF (MRFF) Controller.............70 4.2 Framework of mixed two-loop 2DOF controller...........72 5.Design of the Mixed 2DOF Controller 77 5.1 System Configuration..................................77 5.2 Design procedure......................................79 5.3 Performance evaluations...............................84 5.4 Summary...............................................89 6.Synchronous Decoupled Motion Control for Power-Wheelchairs 90 6.1 Synchronous Controller................................90 6.2 Synchronous Controller Design via DOB.................93 6.3 Modeling of the wheelchair............................95 6.4 Experimental Results..................................98 6.5 Summary..............................................100 7.Conclusions 101 7.1 Summary..............................................101 7.2 Suggestions for further research.....................102 Reference 104 Appendix A. State-space solutions for stabilizing/H2 controller of special SCC formulations 111 Appendix B. State-space solutions for H∞ controller of special SCC formulations 121

    [1] Allen, J.C.: H Engineering and Amplifier Optimization, Birkhauser, Boston, 2004.
    [2] Alter, D. M., and Tsao, T. C.: ‘Control of linear motors for machine tool feed drives: design and implementation of H optimal feedback control.’ ASME Journal of Dynamic Systems, Measurement, and Control, vol.118, pp. 649-656, 1996.
    [3] Balabanian, N., and Bickart, T.A.: Linear Network Theory: Analysis, Properties, Design and Synthesis, Matrix Publishers, Inc., Beaverton, 1982.
    [4] Boulet B., and Francis B.A.: ’Consistency of open-loop experimental frequency-response data with coprime factor plant models’, IEEE Transactions on Automatic Control, vol.43, no.12 , 1998.
    [5] Chen J.: ’Frequency-domain tests for validation of linear fractional uncertain models’, IEEE Transactions on Automatic Control, vol.42, pp. 748-760, 1997.
    [6] Chen, Y.Q., Vinagre, BM, and Podlubny, I: ’ Fractional order disturbance observer for robust vibration suppression’, NONLINEAR DYNAMICS, vol.38, 1-4, pp. 355-367, 2004.
    [7] Choi, B.K., Choi, C.H., and Lim, H.: “Model-Based Disturbance Attenuation for CNC Machining Centers in Cutting Process,” IEEE/ASME Transactions on Mechatronics, vol.4, no.2, pp 157-168, June 1999.
    [8] Choi, C.H. and Kwak, N.: “Robust control of robot manipulator by model-based disturbance attenuation,” IEEE/ASME Transactions on Mechatronics, vol.8, no.4, pp 511-513, December 2003.
    [9] Choi, H.T., Kim, B.K., and Eom, K.S.: “A New Framework for Two Loop Disturbance Rejection Control,” International Journal of Control, vol.79, no. 6, pp 636-649, June 2006.
    [10] Doyle, J.C., Glover, K., Khargonekar, P. P., and Francis, B.A.: ‘State-space solutions to standard H2 and H∞ control problems,’ IEEE Transactions on Automatic Control, vol.34, no.8, pp. 831-847, 1989.
    [11] Geromel J.C., Korogui R.H., Bernussou J.:‘ On H-2 and H-infinity robust output feedback control for continuous-time polytopic systems’, IET Control Theory Applications, vol.1, pp. 1541–1549, 2007.
    [12] Glover, K., and Doyle, J. C.: ‘State-space formulae for all stabilizing controllers that satisfy an H∞-norm bounded and relations to risk sensitivity,’ Systems Control Letter, vol.11, pp. 167-172, 1988.
    [13] Glover, K., and McFarlane, D.: ‘Robust stabilization of normalized coprime factor plant description with H∞-bounded uncertainty,’ IEEE Transactions on Automatic Control, vol.34, no.8, pp. 821-830, 1989.
    [14] Glover, K., Limebeer, D.J.N., Doyle J.C., Kasenally, E.M., and Safonov, M.G.: ‘A characterization of all the solutions to the four block general distance problem,’ SIAM Journal of Control and Optimization, vol.29, no.2, pp. 283-324, 1991.
    [15] Green, M., Glover, K., Limebeer, D.J.N., and Doyle J.C.: ‘A J-spectral factorization approach to H∞ control,’ SIAM Journal of Control and Optimization, vol.28, no.6, pp. 1350-1371, 1990.
    [16] Green, M.: ‘H∞ controller synthesis by J-lossless coprime factorization,’ in Proceedings of the 29th Conference on Decision and Control, Hawaii, U.S.A., pp. 2437-2438, 1990.
    [17] Green, M.: ‘H∞ controller synthesis by J-lossless coprime factorization,’ SIAM Journal of Control and Optimization, vol.30, no.3, pp. 522-547, 1992.
    [18] Green M, Limebeer D.J.N.: Linear Robust Control ,Information and System Sciences Series. Englewood Cliffs, N.J, 1995.
    [19] Halevi Y., Bernstein D.S., Haddad W.M.: ’On stable full-order and reduced-order LQG controllers’, Optimal Control Application & Methods, vol.12, pp. 163~172, 1991.
    [20] Hong, J.L.: ‘A chain scattering-matrix approach to the H∞ output feedback control for the state-delayed systems,’ International Journal of Control, vol.77, no.16, pp. 1373-1381, 2004.
    [21] Hong, J.L., and Teng, C.C.: ‘H∞ control for nonlinear affine systems: a chain scattering-matrix description approach,’ International Journal of Robust and Nonlinear Control, vol.11, pp. 315-333, 2001.
    [22] Jones, R.W. and Tham, M.T.: “A Disturbance Observer Design for Continuous Systems with Delay,” Asia-Pacific Journal of Chemical Engineering, vol. 2, pp 517-525, October 2007.
    [23] Kaneko, K., Komoriya, K., and Tanie, K.: “Operational Space Manipulator Control Based on Variable Disturbance Observer,” in Proc. 3rd IEEE Int. Workshop Advanced Motion Control, pp. 623–630, 1994.
    [24] Kempf, C.J. and Kobayashi, S.: “Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table,” IEEE Transactions on Control Systems Technology, vol.7, no.5, pp 513-526, September 1999.
    [25] Kim, B.K., Choi, H.T., Chung, W.K., and Suh, I.H.: “Analysis and Design of Robust Motion Controllers in the Unified Framework,” Journal of Dynamic Systems, Measurement, and Control, vol.124, pp 313-321, June 2002.
    [26] Kim, B.K. and Chung, W.K.: “Advanced Disturbance Observer Design for Mechanical Positioning Systems,” IEEE Transactions on Industrial Electronics, vol.50, no.6, pp 1207-1216, December 2003.
    [27] Kim, B.K. and Chung, W.K.: “Performance tuning of robust motion controllers for high-accuracy positioning systems,” IEEE/ASME Transactions on Mechatronics, vol.7, no.4, pp 500-514, December 2002.
    [28] Kimura, H.: ‘(J,J’)-lossless factorization based on conjugation,’ Systems and Control Letters, vol.19, pp. 95-109, 1992.
    [29] Kimura, H.: ‘Chain-scattering representation, J-lossless factorization and H∞ control,’ Journal of Math. Systems, Estimation and Control, vol.5, pp. 203-255, 1995.
    [30] Kimura, H.: Chain-Scattering Approach to H∞ Control, Birkhauser, Boston, 1997.
    [31] Kwon, S. and Chung, K.: “Robust Performance of the Multiloop Perturbation Compensator,” IEEE/ASME Transactions on Mechatronics, vol.7, no.2, pp 190-200, June 2002.
    [32] Kwon, S. and Chung, W.K.: “Robust performance of the multiloop perturbation compensator,” IEEE/ASME Transactions on Mechatronics, vol.7, no.2, pp 190-200, June 2002.
    [33] Lanzon, A., Anderson, B.D.O., and Bombois, X.: ‘Selection of a single uniquely specifiable H∞ controller in the chain-scattering framework,’ Automatica, vol.40, pp. 985-994, 2004.
    [34] Lee, P. H., and Soh, Y. C.: ‘Synthesis of simultaneous stabilizing H∞ controller,’ International Journal of Control, vol.78, no.18, pp.1437-1446, 2005.
    [35] Liu, C. S., and Peng, H., “Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems,” ASME J. Dyn. Syst.,Meas., Control, 124_3_, pp. 375–381, 2002.
    [36] Nett C.N, Jacobson C.A, Balas M.J.: ’A connection between state space and doubly coprime fractional representations’, IEEE Transactions on Automatic Control, vol.29, pp. 831-833, 1984.
    [37] Ohishi, K., Nakao, M., Ohnishi, K., and Miyachi, K.: “Microprosser-Controller DC Motor for Load-Insensitive Position Servo System,” IEEE Transactions on Industrial Electronics, vol.IE-34, pp 44-49, February 1987.
    [38] Pugh, A.C., and Tan, L.: ‘A generalized chain-scattering representation and its algebraic system properties,’ IEEE Transactions on Automatic Control, vol.45, no.5, pp. 1002-1007, 2002.
    [39] Schrijver, E. and Dijk, J.V.: “Disturbance Observer for Rigid Mechanical Systems: Equivalence, Stability, and Design,” Journal of Dynamic Systems, Measurement, and Control, vol.124, pp 539-548, December 2002.
    [40] She, J.H., Xin, X., and Pan, Y.D.: “Equivalent-Input-Disturbance Approach-Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System,” IEEE/ASME Transactions on Mechatronics, vol.16, no.2, pp 330-340, 2011.
    [41] Shen, B. H. and Tsai, M. C.: “Robust dynamic stiffness design of linear servomotor drives,” Control Engineering Practice, vol. 14, no. 11 pp. 1325-1336, 2006.
    [42] Skogestad, S., and Postlethwaite, I.: Multivariable Feedback Control- Analysis and Design, John Wiley & Sons, Inc., 1996.
    [43] Smith RS, Doyle JC.: ‘Model validation: A connection between robust control and identification’, IEEE Transactions on Automatic Control, vol.37, pp. 942–952, 1992.
    [44] Tesfaye, A., Lee, H.S., and Tomizuka, M.: “A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems,” IEEE/ASME Transactions on Mechatronics, vol.5, no.1, pp 32-38, March 2000.
    [45] Tsai, M.C. and Gu D.W., A two-port framework for robust and optimal control. Unpublished manuscript.
    [46] Tsai, M.C., and Postlethwaite, I.: ‘On J-lossless coprime factorization approach to H∞ control,’ International Journal of Robust and Nonlinear Control, vol.1, pp. 47-68, 1991.
    [47] Tsai, M.C. and Tsai, C.S.: ‘A chain scattering-matrix description approach to H∞ control,’ IEEE Transactions on Automatic Control, vol.38, no.6, pp. 1416-1421, 1993.
    [48] Tsai M.C. and Tsai C.S.: ’A transfer matrix framework approach to the synthesis of H∞ controllers’, International Journal of Robust and Nonlinear Control, vol.5, pp. 155-173, 1995.
    [49] Tsai, M.C., Tsai, C.S., and Sun, Y.Y.: ‘On discrete-time H∞ control: a J-lossless coprime factorization approach,’ IEEE Transactions on Automatic Control, vol.38, no.7, pp. 1143-1147, 1993.
    [50] Umeno, T. and Hori, Y.: ”Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design,” IEEE Transactions on Industrial Electronics, vol. 38, no.5, pp 363-368, October 1991.
    [51] Wu, A.G. and Duan, G.R.: “Design of PI Observers for Continuous-Time Descriptor Linear Systems,” IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics, vol.36, no.6, pp 1423-1431, December 2006.
    [52] Wu, J.C.: A Study on Friction and Disturbance Compensation of Servo Control Systems, Master dissertation, Dept. of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, July 2009.
    [53] Yang, J.X., Tsai, M.C., and Hsieh, M.F.: ‘Identification and control of a linear servo system,’ in Proceedings of the 4th International Symposium on Linear Drives for Industry Applications, LDIA 2003, Birmingham, UK, pp. 351-354, 2003.
    [54] Yi, L. and Tomizuka, M.: “Two-Degree-of-Freedom Control with Robust Feedback Control for Hard Disk Servo Systems,” IEEE/ASME Transactions on Mechatronics, vol.4, no.1, pp 17-24, March 1999.
    [55] Yoshio, E., Yoshinori, F., Fujiwara, T., and Masayuki, S.: “2DOF Control System Design for Maneuverability Matching and Gust Disturbance Rejection in In-Flight Simulator MuPAL-α,” in SICE Annual Conference, pp. 524-528, 2010.
    [56] Zames, G.: ‘Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms, and approximated inverse,’ IEEE Transactions on Automatic Control, vol.26, pp. 301-320, 1981.
    [57] Zhou, B, Duan, GR, Li, Z.Y.: ‘A Stein matrix equation approach for computing coprime matrix fraction description’, IET Control Theory Applications, vol.3, pp. 691–700, 2009.
    [58] Zhou, K., Doyle, J.C., and Glover, K.: Robust and optimal control, Prentice-Hall Inc., New Jersey, 1996.

    下載圖示 校內:2017-08-15公開
    校外:2017-08-15公開
    QR CODE