簡易檢索 / 詳目顯示

研究生: 黎尚原
Li, Shang-Yuan
論文名稱: 基於經驗模態分析之彩色影像強化方法的設計與實現
Design and VLSI Implementation of Color Image Enhancement Method Based on Empirical Mode Decomposition Concept
指導教授: 陳培殷
Chen, Pei-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 57
中文關鍵詞: 經驗模態分析彩色影像強化VLSI架構
外文關鍵詞: empirical mode decomposition, color image enhancement, VLSI architecture
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在醫學內視鏡攝影、夜間監視器及行車紀錄器等應用中,拍攝環境是屬於較陰暗或亮度不均勻的情況,由於一般顯示裝置的亮度呈現範圍狹小,導致輸出影像難以完整呈現所有細節。因此,一個適用於陰暗或不均勻亮度拍攝環境的影像強化技術是相當重要且吸引人的議題。此外,影像強化技術常常被實作在需要即時運算的電子產品當中,所以一個效果良好、低複雜度且適合以VLSI硬體電路實現的影像強化技術更是不可或缺的。
    在本論文中,我們發展一個基於經驗模態分解(Empirical Mode Decomposition, EMD) 技術的影像強化演算法。我們採用快速適應二維經驗模態分解(Fast and Adaptive Bi-dimensional Empirical Mode Decomposition, FABEMD)方法的架構,並改良訊號的組合方式來有效地偵測影像中的高頻資訊。而為了改善gamma correction的缺點,所提出的方法使用一個adaptive pixel-based gamma correction,以保留更多的影像細節資訊。
    針對所設計方法,我們也開發其相對應的VLSI電路架構並使用Verilog硬體描述語言實現該電路。根據Synopsys的Design Vision和TSMC 0.13μm的標準元件庫合成結果,該電路所需的邏輯閘數目為16K,工作時脈為5ns,平均功率消耗為19.8mW,並可達到200百萬像素/秒處理量,其處理速度滿足Full HD(1920*1080)每秒30張影像的格式需求。

    In some image applications, such as endoscopy, night monitors, vehicle camera, the display devices can’t work well under darker environment or unequal light source because the illumination expressive range in general devices is narrow and small. Thus, the image enhancement method which is suitable for darker environment or unequal light source becomes a very important and attractive issue. Moreover, image enhancement technique usually implement in many electric products which require real-time processing. To achieve the goal of real time processing and low-cost VLSI implementation, an efficient and low complexity image enhancement method is needed.
    For the above mentioned reason, we proposed an image enhancement algorithm based on empirical mode decomposition. To reduce the computing resource and improve the detail information of the shades, we adopt the fast and adaptive bidimensional empirical mode decomposition and modify its algorithm by using the fixed window. To improve the disadvantage of gamma correction, we propose an adaptive pixel-based gamma correction to solve the problem which loses detail information in light blocks. It can estimate intensity of lights with each pixel and keep more detail information adequately.
    The VLSI architecture of our proposed design is implemented by using Verilog HDL. We used Synopsys Design Vision to synthesize the designs with TSMC 0.13μm cell library. Synthesis results show that the design circuit contains 16K gate counts and average power consumption requires 19.8mW. It works with a clock period of 5 ns and can achieve a processing rate of 200 mega pixels per second which is quick enough to process a video resolution of Full HD (1920×1024) at 30 fps in real time.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3論文架構 3 第二章 相關文獻探討 4 2.1 RWRE 演算法 4 2.2 CES 演算法 5 2.3優缺點比較 7 2.4 EMD 7 2.5 BEMD 8 2.6 FABEMD 10 第三章 所提出的影像強化演算法 13 3.1 Enhanced Reflectance 14 3.2 Adaptive Pixel-based Gamma Correction 19 3.3 Proposed Method Flow 23 第四章 影像強化演算法之硬體實現 27 4.1 硬體架構 27 4.2 子電路硬體架構 28 4.2.1 RGB_in硬體架構 28 4.2.2 Register Bank硬體架構 29 4.2.3 Max-Median Detector硬體架構 30 4.2.4 Divider with the lookup table for logarithm硬體架構 32 4.2.5 Correction硬體架構 38 4.2.6 HSV Transformer硬體架構 39 4.2.7 RGB_out硬體架構 40 第五章 模擬結果 41 5.1 執行時間與line buffer數目比較 41 5.2 數據比較結果 43 5.2.1 WBQM 43 5.2.2 CEF 43 5.2.3 Chrominance loss rate 44 5.3 視覺比較結果 47 5.4 硬體實作數據 53 第六章 結論與未來工作 55 6.1 結論 55 6.2 未來工作 55 參考文獻 56

    [1] D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. Image Processing, vol. 6, no. 3, pp. 451–462, March 1997.

    [2]E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images”, ACM Transactions on Graphics , vol. 21, no 3, pp.267-276, July 2002

    [3]Q. Shan, J. Jia, M. S. Brown, “Globally optimized linear windowed tone mapping”, IEEE Trans. on Visualization and Computer Graphic, vol. 16, no.4, pp.663-675, July/August 2010.

    [4] J.-L. Wu , “An automatic enhancement method for high contrast images via bilateral filtering”, Journal of Science and Engineering Technology, vol. 3, no. 3, pp. 81-87, 2007

    [5] 陳建隆,”Application of An Improvement Empirical Mode Decomposition Method to Eliminate Unwanted Illumination Effects in Document Images ”,國立中央大學資訊工程研究所,碩士論文,民國98 年

    [6] N. E. Huang, Z. Shen, S. R. Long, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no. 1971, pp. 903–995, 1998.

    [7] N. E. Huang, Z. Shen, and S. R. Long, “A new view of nonlinear water waves: the Hilbert spectrum,” Annual Review of Fluid Mechanics, vol. 31, pp. 417–457, 1999.

    [8] S.-C. Pei and M. Tzeng "Uneven illumination removal and image enhancement using empirical mode decomposition," 20th Conf. in Computer Vision, Graphics and Image Processing(CVGIP), 2007.

    [9]C. -T. Shen and W. -.L. Hwang, “Color image enhancement using retinex with robust envelope”, IEEE International Conference on Image Processing, pp. 3141-3144, Nov. 2009

    [10]J. Mukherjee, S. K. Mitra, “Enhancement of color images by scaling the DCT coefficients”, IEEE Trans. Image processing, vol. 17, no. 10, Oct. 2008

    [11] E. W. Land and J. J. McCann, “Lightness and retinex theory,” J. Optical Society of America, vol. 61, no. 1, pp. 1–11, January 1971.

    [12]S.-D. Wu, A. -Y. Chen, and H. -B. Chen, “Survey on the Recent Developments of empirical mode decomposition”, 臺北科技大學學報, vol. 42, no. 1, April 2009

    [13] Sharif M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 728356:1–18, 2008

    [14]Y.-B. Li, X.-.B Li, Z. Xizn, “design and realization of fast median filter based on FPGA”, Chinese Journal of Liquid Crystals and Display, vol. 25, No. 2, April 2010

    [15]B. Parjami, “COMPUTER ARITHMETIC – Algorithm and Hardware Designs”, OXFORD UNIVERSITY, New York, pp.211-213, 2000

    [16]J. -C. Jeong, W. -C. Park, T. -.D. Han, and M. -K. Lee, “A cost-effective pipelined divider with a small lookup table”, IEEE Trans. on Computers, vol. 53, no.4, April 2004

    [17] Z. Wang and A. C. Bovik, “A universal image quality index”, IEEE Signal Process Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002

    [18] S. Susstrunk and S. Winkler, “Color image quality on the internet”, Proc. IS&T/SPIE Electronic Imaging: Internet Imaging V, vol. 5304, pp. 118–131, 2004

    [19] J. Lin, “An Automatic White Balance Method Based on Edge Detection”, in Proceedings of the 10th IEEE International Symposium on Consumer Electronics, pp.1-4, 2006
    [21]http://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/BilateralSlides.pdf
    [22]http://dragon.larc.nasa.gov/retinex/
    [23] http://pfstools.sourceforge.net/hdr_gallery.html

    下載圖示 校內:2020-07-12公開
    校外:2020-07-12公開
    QR CODE