簡易檢索 / 詳目顯示

研究生: 林伯彥
Lin, Bo-Yan
論文名稱: 開發蝴蝶蘭胞器DNA的分子標誌
Develop the organellar DNA markers for Phalaenopsis species
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 291
中文關鍵詞: 葉綠體DNA標誌粒線體DNA標誌蝴蝶蘭屬
外文關鍵詞: cpDNA marker, mtDNA marker, moth orchids, Phalaenopsis
相關次數: 點閱:170下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去本實驗室經由比較台灣原生種姬蝴蝶蘭(Phalaenopsis equestris)和白花蝴蝶蘭(P. aphrodite subsp. formosana)的葉綠體DNA,發現兩種蝴蝶蘭在演化過程產生變異的熱點區域,特別是在基因間隙和內插子區域中。本研究針對高變異的6個基因間隙和1個基因內插子區域進行定序,以分析19種蝴蝶蘭原生種間序列變異的情形,並探討親緣演化關係。為了開發蝴蝶蘭粒線體DNA標誌,首先鑑定白花蝴蝶蘭粒線體DNA含有的微衛星序列(microsatellite),針對SSR共設計13組引子對,利用PCR產物長度的差異用以區別不同蝴蝶蘭原生種。多型性程度分析顯示,13組粒線體SSR標誌的PIC值介於0.12到0.85。結合5組SSR標誌可以成功鑑定18種蝴蝶蘭原生種。而利用串聯粒線體DNA或葉綠體DNA分子數據所建構的親緣演化樹有所不同。本研究也將胞器DNA標誌應用於鑑別11個姬蝴蝶蘭品系,結合3組葉綠體標誌可以將其全部區分出來。此外,藉由蝴蝶蘭粒線體DNA標誌得以確認蝴蝶蘭粒線體是母系遺傳,可應用於追朔蝴蝶蘭雜交種的原始母本來源。綜合以上結果,本研究開發的胞器DNA標誌可應用於品種鑑定、親本分析、親緣演化研究。

    Previously, by comparative cpDNA analysis of two moth orchids, P. aphrodite and P. equestris, many evolutionary hot-spot regions were identified, particularly in intergenic spacer and intron regions. In this study, the polymorphic sites located in six intergenic spacers and one intron among 19 moth orchids were further determined and phylogenetically analyzed. To explore the mtDNA as markers, microsatellite located in the mtDNA of P. aphrodite were identified. In total, the primer pairs for 13 mtDNA markers were designed and subsequently been used to evaluate their amplification capability and transferability among moth orchids. The polymorphism information content (PIC) values of 13 mtDNA markers varied from 0.12 to 0.85 in native moth orchids. Based on the combination of 5 mtDNA markers, it could successfully identify 18 out of 19 moth orchids. Phylogenetic tree constructed on the basis of concatenated mtDNA or cpDNA showed distinct relationship among these moth orchids. Furthermore, cpDNA and mtDNA markers were also applied to distinguish the subspecies of P. equestris. The combination of 3 cpDNA markers could completely identify 11 subspecies of P. equestris. Furthermore, maternally inherited mode of mitochondrial DNA was confirmed based on mtDNA markers technology. In summary, we have developed a set of organellar DNA markers that can be used for the identification and phylogenetic studies in Phalaenopsis orchids.

    中文摘要 I 英文摘要 II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XII 縮寫表 XVI 一、文獻探討 1 1-1分子標誌的簡介 1 1-2植物粒線體基因組 9 1-3植物葉綠體基因組 18 1-4利用基因體作為分子標誌 20 1-5分子標誌與種苗產業 24 1-6研究目的 28 二、材料方法 29 2-1實驗材料 29 2-2實驗方法 29 三、結果 35 3-1比較蝴蝶蘭間葉綠體DNA變異情形以開發分子標誌 35 3-2開發蝴蝶蘭粒線體DNA分子標誌 40 3-3利用胞器DNA標誌以區別P. aphrodite和P. amabilis 49 3-4利用粒線體標誌以探討蝴蝶蘭粒線體DNA遺傳方式 50 3-5利用胞器DNA標誌以區別姬蝴蝶蘭品系 53 四、討論 61 4-1粒線體微衛星序列特性分析 61 4-2比較胞器基因座在蝴蝶蘭原生種間之遺傳歧異度 63 4-3蝴蝶蘭粒線體母系遺傳的特性 67 4-4利用胞器DNA標誌對原生種進行親緣演化分析 68 4-5利用胞器DNA標誌對姬蝴蝶蘭品系鑑定以及親緣演化分析 72 五、參考文獻 75

    李玠瑩,研發蝴蝶蘭葉綠體微衛星分子標誌及其應用之研究,國立成功大學生命科學研究所碩士論文,2008。
    吳明哲,分子標誌在蔬菜種子之研發與應用,植物種苗生技 21,18-22,2010。
    林仲毅,利用葉綠體DNA作為分子標誌,以鑑別不同品系的蝴蝶蘭,國立成功大學生物科技研究所碩士論文,2013。
    陳文輝,蝴蝶蘭的品種改良,科學發展 351,12-17,2002。
    陳哲仁、吳明哲,分子標誌在農業生技產業上之應用,植物種苗生技 9,49-55,2007。
    黃重銘、林春良,台灣蝴蝶蘭新品種育種成果,農政與農情 215,50-54,2010。
    葉育哲,蝴蝶蘭原生種簡介,花蓮區農業專訊 71,5-11,2010。
    傅子煜,植物品種權智慧資源規劃與全球化之產業經營-以蝴蝶蘭產業為例,植物種苗生技 13,11-19,2008。
    楊玉婷,2013 臺灣國際蘭展報導,農業生技產業季刊 33,58-60,2013。
    蘇郁雅,台灣原生種白花蝴蝶蘭粒線體基因組的分析,國立成功大學生物科技研究所碩士論文,2014。
    Adams, K.L., Palmer, J.D. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution 29, 380-395, 2003.
    Agarwal, M., Shrivastava, N., Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27, 617-631, 2008.
    Akopyanz, N., Bukanov, N., Westblom, T., Berg, D.E. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acids Research 20, 6221-6225, 1992.
    Allen, J.O., Fauron, C.M., Minx, P., Roark, L., Oddiraju, S., Lin, G.N., Meyer, L., Sun, H., Kim, K., Wang, C., Du, F., Xu, D., Gibson, M., Cifrese, J., Clifton, S.W., Newton, K.J. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177, 1173-1192, 2007.
    Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B., Barry, K., Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution 27, 1436-1448, 2010.
    Alverson, A.J., Zhuo, S., Rice, D.W., Sloan, D.B., Palmer, J.D. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. Plos One 6, e16404, 2011.
    Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., Young, I.G. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465, 1981.
    Andre´ , C., Levy, A., Walbot, V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends in Genetics 8, 128-132, 1992.
    Bayer, R.J., Puttock, C.F., Kelchner, S.A. Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. American Journal of Botany 87, 259-272, 2000.
    Bucci, G., Anzidei, M., Madaghiele, A., GG, V. Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Molecular Ecology 7, 1633-1643, 1998.
    Burger, G., Saint-Louis, D. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea : Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11, 1675-1694, 1999.
    Chang, C.C., Lin, H.C., Lin, I.P., Chow, T.Y., Chen, H.H., Chen, W.H., Cheng, C.H., Lin, C.Y., Liu, S.M., Chang, C.C., Chaw, S.M. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution 23, 279-291, 2006.
    Chang, Y.K., Veilleux, R.E. Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. Journal of the American Society for Horticultural Science 134, 58-66, 2009.
    Chaw, S.M., Shih, A.C., Wang, D., Wu, Y.W., Liu, S.M., Chou, T.Y. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution 25, 603-615, 2008.
    Christensen, A.C. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biology and Evolution 5, 1079-1086, 2013.
    Christenson, E.A. Subgenus Phalaenopsis. Phalaenopsis: a monograph, Timber Press, Portland, 239-248, 2001.
    Clark, C.M., Wentworth, T.R., O'Malley, D.M. Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). American Journal of Botany 87, 774-782, 2000.
    Cordeiro, G.M., Casu, R., McIntyre, C.L., Manners, J.M., Henry, R.J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science 160, 1115-1123, 2001.
    Cronn, R., Wendel, J.F. Cryptic trysts, genomic mergers, and plant speciation. New Phytologist , 161, 133-142, 2004.
    Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H., Housman, D.E. Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proceedings of the National Academy of Sciences of the United States of America 94, 7388-7393, 1997.
    Deng, L., Shuman, S. Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3' end addition, and termination site choice. Biochemistry 36, 15892-15899, 1997.
    Duminil, J., Petit, R.J. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2, 428-430, 2002.
    Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792-1797, 2004.
    Efron, B., Halloran, E., Holmes, S. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Sciences of the United States of America 93, 13429-13434, 1996.
    Ellegren, H. Microsatellite evolution: a battle between replication slippage and point mutation. Trends in Genetics 18, 70-71, 2002.
    Fabre, E., Dujon, B., Richard, G.F. Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Research 30, 3540-3547, 2002.
    Fauron, C., Casper, M., Gao, Y., Moore, B. The maize mitochondrial genome: dynamic, yet functional. Trends in Genetics 11, 228-235, 1995.
    Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368-376, 1981.
    Field, D., Wills, C. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proceedings of the National Academy of Sciences of the United States of America 95, 1647-1652, 1998.
    Formighieri, E.F., Tiburcio, R.A., Armas, E.D., Medrano, F.J., Shimo, H., Carels, N., Goes-Neto, A., Cotomacci, C., Carazzolle, M.F., Sardinha-Pinto, N., Thomazella, D.P., Rincones, J., Digiampietri, L., Carraro, D.M., Azeredo-Espin, A.M., Reis, S.F., Deckmann, A.C., Gramacho, K., Goncalves, M.S., Moura Neto, J.P., Barbosa, L.V., Meinhardt, L.W., Cascardo, J.C., Pereira, G.A. The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycological Research 112, 1136-1152, 2008.
    Froelicher, Y., Mouhaya, W., Bassene, J.B., Costantino, G., Kamiri, M., Luro, F., Morillon, R., Ollitrault, P. New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genetics and Genomes 7, 49-61, 2011.
    Galtier, N., Nabholz, B., Glemin, S., Hurst, G.D. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18, 4541-4550, 2009.
    George, U.D., Kenworthy, N., William, J., Costa, J.M., Cregan, P.B., Alvernaz, J. Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism. Crop Science 43, 1858-1867, 2003.
    Goh, M.W.K., Kumar, P.P., Lim, S.H., Tan, H.T.W. Random amplified polymorphic DNA analysis of the moth orchids, Phalaenopsis (Epidendroideae: Orchidaceae). Euphytica 141, 11-22, 2005.
    Goremykin, V.V., Salamini, F., Velasco, R., Viola, R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Molecular Biology and Evolution 26, 99-110, 2009.
    Gray, M.W., Lang, B.F., Burger, G. Mitochondria of protists. Annual Review of Genetics 38, 477-524, 2004.
    Hadrys, H., Balick, M., Schierwater, B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 55-63, 1992.
    Handa, H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Research 31, 5907-5916, 2003.
    Hao, W., Palmer, J.D. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proceedings of the National Academy of Sciences of the United States of America 106, 16728-16733, 2009.
    He, C., Poysa, V., Yu, K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics 106, 363-373, 2003.
    Hedges, S.B., Blair, J.E., Venturi, M.L., Shoe, J.L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. Biomed Central Evolutionary Biology 4, 2-10, 2004.
    Hellberg, M.E. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. Biomed Central Evolutionary Biology 6, 24-31, 2006.
    Herselman, L. Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133, 319-327, 2003.
    Honma, Y., Yoshida, Y., Terachi, T., Toriyama, K., Mikami, T., Kubo, T. Polymorphic minisatellites in the mitochondrial DNAs of Oryza and Brassica. Current Genetics 57, 261-270, 2011.
    Jacques, J.P., Kolakofsky, D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes and Development 5, 707-713, 1991.
    Jaramillo-Correa, J.P., Aguirre-Planter, E., Eguiarte, L.E., Khasa, D.P., Bousquet, J. Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants. Journal of Molecular Evolution 76, 146-157, 2013.
    Jheng, C.F., Chen, T.C., Lin, J.Y., Chen, T.C., Wu, W.L., Chang, C.C. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Science 190, 62-73, 2012.
    Kantety, R.V., La Rota, M., Matthews, D.E., Sorrells, M.E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology 48, 501-510, 2002.
    Kao, Y., Chang, S., Lin, T., Hsieh, C. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Annals of Botany 87, 387-395, 2001.
    Kashi, Y., King, D., Soller, M. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13, 74-78, 1997.
    Knoop, V., Unseld, M., Marienfeld, J., Brandt, P., Sunkel, S., Ullrich, H., Brennicke, A. copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142, 579-585, 1996.
    Kohchi, T., Shirai, H., Fukuzawa, H., Sano, T., Komano, T., Umesono, K., Inokuchi, H., Ozeki, H., Ohyama, K. Structure and organization of Marchantia polymorpha chloroplast genome. IV. Inverted repeat and small single copy regions. Journal of Molecular Biology 203, 353-372, 1988.
    Konieczny, A., Ausubel, F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 4, 403-410, 1993.
    Kruglyak, S., Durrett, R.T., Schug, M.D., Aquadro, C.F. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences of the United States of America 95, 10774-10778, 1998.
    Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R., Pandey, B.K. Potential of molecular markers in plant biotechnology. Plant Omics Journal 2, 141-162, 2009.
    Lang, B.F., Gray, M.W., Burger, G. Mitochondrial genome evolution and the origin of eukaryotes. Annual Review of Genetics 33, 351-397, 1999.
    Leblanc, C., Boyen, C., Richard, O., Bonnard, G., Grienenberger, J.M., Kloareg, B. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. Journal of Molecular Biology 250, 484-495, 1995.
    Lee, J.M., Nahm, S.H., Kim, Y.M., Kim, B.D. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theoretical and Applied Genetics 108, 619-627, 2004.
    Lee, J.W., Bang, K.H., Kim, Y.C., Seo, A.Y., Jo, I.H., Lee, J.H., Kim, O.T., Hyun, D.Y., Cha, S.W., Cho, J.H. CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer). Molecular Biology Reports 39, 729-736, 2012.
    Li, Y.C., Korol, A.B., Fahima, T., Beiles, A., Nevo, E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11, 2453-2465, 2002.
    Li, Y.C., Korol, A.B., Fahima, T., Nevo, E. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution 21, 991-1007, 2004.
    Lonsdale, D.M., Hodge, T.P., Fauron, C.M. The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Research 12, 9249-9261, 1984.
    Maia, L.C., Palmieri, D.A., de Souza, V.Q., Kopp, M.M., de Carvalho, F.I., Costa de Oliveira, A. SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. International Journal of Plant Genomics 2008, 1-13, 2008.
    Marechal, L., Guillemaut, P., Cosset, A., Arbogast, M., Weber, F., Weil, J.H., Dietrich, A. Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Research 18, 3689-3696, 1990.
    Martin, W., Stoebe, B., Goremykin, V., Hapsmann, S., Hasegawa, M., Kowallik, K.V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162-165, 1998.
    Metzgar, D., Bytof, J., Wills, C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research 10, 72-80, 2000.
    Morgante, M., Hanafey, M., Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30, 194-200, 2002.
    Mower, J.P., Sloan, D.B., Alverson, A.J. Plant mitochondrial genome diversity: The genomics revolution. Plant Genome Diversity, Springer, Vienna, 123-140, 2012.
    Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., Kadowaki, K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Molecular Genetics and Genomics 268, 434-445, 2002.
    Ohta, N., Sato, N., Kuroiwa, T. Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Research 26, 5190-5198, 1998.
    Padolina, J., Linder, C., Simpson, B. A phylogeny of Phalaenopsis using multiple chloroplast markers. Selbyana 26, 23-27, 2005.
    Palmer, J.D., Shields, C.R. Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307, 437-440, 1984.
    Petit, R.J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., Vendramin, G.G. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14, 689-701, 2005.
    Pombert, J.F., Beauchamp, J., Otis, C., Lemieux, C., Turmel, M. The complete mitochondrial DNA sequence of the green alga Oltmannsiellopsis viridis: evolutionary trends of the mitochondrial genome in the Ulvophyceae. Current Genetics 50, 137-147, 2006.
    Pombert, J.F., Otis, C., Lemieux, C., Turmel, M. The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. Molecular Biology and Evolution 21, 922-935, 2004.
    Powell, W., Morgante, M., McDevitt, R., Vendramin, G.G., Rafalski, J.A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proceedings of the National Academy of Sciences 92, 7759-7763, 1995.
    Provan, J., Powell, W., Hollingsworth, P.M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology and Evolution 16, 142-147, 2001.
    Provan, J., Russell, J.R., Booth, A., Powell, W. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum. Molecular Ecology 8, 505-511, 1999a.
    Provan, J., Soranzo, N., Wilson, N.J., Goldstein, D.B., Powell, W. A low mutation rate for chloroplast microsatellites. Genetics 153, 943-947, 1999b.
    Rajendrakumar, P., Biswal, A.K., Balachandran, S.M., Srinivasarao, K., Sundaram, R.M. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23, 1-4, 2007.
    Robbens, S., Derelle, E., Ferraz, C., Wuyts, J., Moreau, H., Van de Peer, Y. The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Molecular Biology and Evolution 24, 956-968, 2007.
    Rohlf, F.J. Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology 111, 463-478, 2000.
    Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425, 1987.
    Satoh, M., Kubo, T., Mikami, T. The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions. Theoretical and Applied Genetics 113, 477-484, 2006.
    Schall, B.A., Hayworth, D.A., Olsen, K.M. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7, 465-474, 1998.
    Schuster, W., Brennicke, A. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? European Molecular Biology Organization Journal 6, 2857-2863, 1987.
    Selosse, M., Albert, B., Godelle, B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends in Ecology and Evolution 16, 135-141, 2001.
    Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E., Small, R.L. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142-166, 2005.
    Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. European Molecular Biology Organization Journal 5, 2043-2049, 1986.
    Skuza, L., Filip, E., Szucko, I. Use of organelle markers to study genetic diversity in soybean. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomyand Nitrogen Relationships, InTech, Croatia, 553-582, 2013.
    Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu, M., McCauley, D.E., Palmer, J.D., Taylor, D.R. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. Plos Biology 10, e1001241, 2012.
    Sloan, D.B., Alverson, A.J., Storchova, H., Palmer, J.D., Taylor, D.R. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. Biomed Central Evolutionary Biology 10, 274, 2010.
    Smith, D.R., Hua, J., Lee, R.W. Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Current Genetics 56, 427-438, 2010.
    Smith, D.R., Lee, R.W. Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Molecular Biology and Evolution 25, 487-496, 2008.
    Smith, D.R., Lee, R.W. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA. Biomed Central Genomics 10, 132, 2009.
    Soltis, D.E., Soltis, P.S. Genetics of plant isozymes. Isozymes in Plant Biology, Springer, Netherlands, 46-72, 1989.
    Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503-517, 1975.
    Suraweera, N., Iacopetta, B., Duval, A., Compoint, A., Tubacher, E., Hamelin, R. Conservation of mononucleotide repeats within 3' and 5' untranslated regions and their instability in MSI-H colorectal cancer. Oncogene 20, 7472-7477, 2001.
    Tachida, H., Iizuka, M. Persistence of repeated sequences that evolve by replication slippage. Genetics 131, 471-478, 1992.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739, 2011.
    Temnykh, S., DeClerck, G., Copley, R.R., Schultz, J., Ponting, C.P., Bork, P. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research 11, 1441-1452, 2001.
    Thiel, T., Michalek, W., Varshney, R.K., Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106, 411-422, 2003.
    Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680, 1994.
    Toth, G., Gaspari, Z., Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967-981, 2000.
    Tsai, C., Huang, S., Chou, C. Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA. Plant Systematics and Evolution 256, 1-16, 2006.
    Tsai, C.C., Chiang, Y.C., Huang, S.C., Chen, C.H., Chou, C.H. Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant Systematics and Evolution 288, 77-98, 2010.
    Tsai, C.C., Chiang, Y.C., Lin, C.S. Plastid trnL intron polymorphisms among Phalaenopsis species used for identifying the plastid genome type of Phalaenopsis hybrids. Scientia Horticulturae 142, 84-91, 2012.
    Tsutsui, K., Suwa, A., Sawada, K., Kato, T., Ohsawa, T.A., Watano, Y. Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). Journal of Plant Research 122, 509-521, 2009.
    Turmel, M., Otis, C., Lemieux, C. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus. Biomed Central Genomics 8, 137-148, 2007.
    Varshney, R.K., Thiel, T., Stein, N., Langridge, P., Graner, A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular and Molecular Biology Letters 7, 537-546, 2002.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407-4414, 1995.
    Wang, Q., Zhang, Y., Fang, Z. Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Molecular Breeding 30, 709-716, 2012.
    Ward, B.L., Anderson, R.S., Bendich, A.J. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25, 793-803, 1981.
    Wicke, S., Schneeweiss, G.M., dePamphilis, C.W., Muller, K.F., Quandt, D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology 76, 273-297, 2011.
    Williams, J., Kubelik, A., Livak, K. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531-6535, 1990.
    Wolfe, K.H., Li, W.H., Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84, 9054-9058, 1987.
    Wren, J.D., Forgacs, E., Fondon, J.W., 3rd, Pertsemlidis, A., Cheng, S.Y., Gallardo, T., Williams, R.S., Shohet, R.V., Minna, J.D., Garner, H.R. Repeat polymorphisms within gene regions: phenotypic and evolutionary implications. The American Journal of Human Genetics 67, 345-356, 2000.
    Wu, F.H., Chan, M.T., Liao, D.C., Hsu, C.T., Lee, Y.W., Daniell, H., Duvall, M.R., Lin, C.S. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. Biomed Central Plant Biology 10, 68-79, 2010.
    Xiong, X.F., Reznikoff, W.S. Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. Journal of Molecular Biology 231, 569-580, 1993.
    Xue, J.Y., Liu, Y., Li, L., Wang, B., Qiu, Y.L. The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Current Genetics 56, 53-61, 2010.
    Yamada, N.A., Smith, G.A., Castro, A., Roques, C.N., Boyer, J.C., Farber, R.A. Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells. Mutation Research 499, 213-225, 2002.
    Yu, Y.B., Wang, J.Y., Mekki, D.M. Evaluation of genetic diversity and genetic distance between twelve chinese indigenous chicken breeds based on microsatellite markers. Poultry Science 5, 550-556, 2006.
    Yukawa, T., Kita, K., Handa, T., Topik, H. Molecular phylogenetics of Phalaenopsis (Orchidaceae) and allied genera: re-evaluation of generic concepts. Acta Phytotaxonomica et Geobotanica 56, 141-161, 2005.

    下載圖示 校內:2019-09-12公開
    校外:2019-09-12公開
    QR CODE