| 研究生: |
羅氏鶯 Oanh, Thi La |
|---|---|
| 論文名稱: |
熱帶地區內陸水域大氣校正神經網絡使用 Landsat 8衛星影像 Atmospheric Correction Neural Network for Inland Waters of Tropical Regions using Landsat 8 Imagery |
| 指導教授: |
林昭宏
Lin, Chao-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 大氣校正 、遙感反射率 、類神經網路 、Landsat 8 OLI影像 |
| 外文關鍵詞: | Atmospheric correction, remote sensing reflectance, artificial neural network, Landsat 8 OLI imagery |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水體遙感反射率的擷取值是使用衛星遙感技術進行水質監測的一個基本且重要的步驟。大氣影響通常顯著而複雜,使得大氣校正(ACs)難以準確得出地表反射率。輻射傳輸模式是大氣校正很有前途的方法之一。然而,該方法需要使用複雜的模型計算包含氣溶膠模型、大氣條件和感測器的幾何資訊等參數,因此相當耗費時間,有時甚至會因鄰近效應、雲的陰影和氣溶膠的過度校正產生負的水體遙感反射率。因此本研究提出基於卷積和全連接神經網路的大氣校正網路—AC-Net,利用Landsat 8 OLI影像擷取熱帶地區內陸水體的遙感反射率。為了訓練AC-Net,神經網路選擇採用現有大氣校正模型所生成的遙感反射率作為訓練資料。現有的大氣校正模型當中,iCOR因考量目標區域周圍物體造成的相鄰效應,為有前途的輻射傳輸模型,故本研究所提出的模型將透過iCOR產生AC-Net模型所需的訓練資料,使AC-Net可直接透過神經網路,將頂層大氣反射率、幾何角度和氣溶膠光學厚度等輸入資料直接輸出成遙感反射率。AC-Net亦使用現地資料進行驗證並測試其他湖泊的數據,評估模型的可行性與有效性。實驗中AC-Net與其他常用模型進行比較,包括暗體辨識法(DOS)、快速大氣校正(QUAC)、ACOLITE大氣校正、嚴謹大氣校正(FLAASH)、LaSRC演算法和iCOR,並透過均方根誤差(RMSE)、偏差(BIAS)和平均絕對百分比誤差(MAPE)評估大氣校正模型的性能。結果顯示AC-Net的RMSE為0.004,偏差為0.0005,MAPE為4.19,性能表現優於其他常用模型。此外AC-Net能避免產生負的遙感反射率,並且適用於熱帶地區的內陸水體。
關鍵字:大氣校正、遙感反射率、類神經網路、Landsat 8 OLI影像
The retrieval of water remote-sensing reflectance is an important and fundamental step for water quality monitoring using satellite remote sensing techniques. The atmospheric effects are generally significant and complex, which make atmospheric corrections (ACs) difficult to accurately derive the remote-sensing reflectance. The radiative transfer model is considered as a promising method in atmospheric correction. Nevertheless, the approach requires calculating a set of parameters using complicated models and formulas, including aerosol model, atmospheric conditions, and sensor geometric information. This leads to time-consuming and sometimes produces negative water remote sensing reflectance because of the overcorrection for adjacency effects, cloud shadows, and aerosol. With a revisit cycle of 16-days, free available, and a high resolution of 30 meters, Landsat 8 OLI imagery is widely utilized for water quality monitoring in inland waters. In this study, an atmospheric correction network, called AC-Net, based on convolutional and fully-connected neural networks is proposed to retrieve remote-sensing reflectance of inland waters in tropical regions by using Landsat 8 imagery. To train AC-Net, the remote-sensing reflectance generated by an existing AC model is used as the simulated training label data. The image CORrection for atmospheric effects named iCOR algorithm was assessed to be a promising radiative transfer model due to counting for the adjacency effects caused by objects surrounding the target area. This algorithm was used to generated the training label of remote-sensing reflectance. After the model training, the remote-sensing reflectance can be derived by AC-Net with the inputs of top of atmosphere reflectance, geometric angles, and aerosol optical thickness. The proposed model was validated with in-situ remote-sensing reflectance measured in the field campaigns, and the validated model was further tested by using data in other lakes for feasibile and effective assessments. The proposed model was compared with AC models, including dark object subtraction (DOS), quick atmospheric correction (QUAC), atmospheric correction for OLI lite (ACOLITE), fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH), Landsat 8 surface reflectance code (LaSRC), and Image correction for atmospheric effects (iCOR) by using in-situ measurements. The performances of AC models were evaluated using root means square error (RMSE), bias, and mean absolute percentage error (MAPE). The results demonstated that AC-Net with the performance of RMSE=0.004, Bias=0.0005, and MAPE=4.19 outperforms the compared AC models. In addition, the testing results reveal that the AC-Net can avoid producing negative remote-sensing reflectance, and the AC-Net is effective for inland waters in tropical regions.
Keywords: Atmospheric correction, remote sensing reflectance, artificial neural network, Landsat 8 OLI imagery
Allan, M. G., Hamilton, D. P., Hicks, B. J., & Brabyn, L. (2011). Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. International Journal of Remote Sensing, 32(7), 2037–2055. https://doi.org/10.1080/01431161003645840
Assessment, M. E. (2005). Ecosystems and human well-being (Vol. 5, p. 563). United States of America: Island press.
Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K., Dothe, H., Matthew, M. W., Adler-Golden, S. M., Chetwynd, Jr., J. H., Richtsmeier, S. C., Pukall, B., Allred, C. L., Jeong, L. S., & Hoke, M. L. (1999). MODTRAN4 radiative transfer modeling for atmospheric correction. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 3756(October 1999), 348. https://doi.org/10.1117/12.366388
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., & van den Bosch, J. (2014). MODTRAN6: a major upgrade of the MODTRAN radiative transfer code. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 9088, 90880H. https://doi.org/10.1117/12.2050433
Bernardo, N., Watanabe, F., Rodrigues, T., & Alcântara, E. (2017). Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Advances in Space Research, 59(9), 2335–2348. https://doi.org/10.1016/j.asr.2017.02.017
Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R. Y., Perkins, T. C., Berk, A., Ratkowski, A. J., Felde, G., & Hoke, M. L. (2005). Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 5806(June 2005), 668. https://doi.org/10.1117/12.603359
Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199-215.
Bue, B. D., Thompson, D. R., Deshpande, S., Eastwood, M., Green, R. O., Mullen, T., Natraj, V., & Parente, M. (2019). Neural Network Radiative Transfer for Imaging Spectroscopy. Atmospheric Measurement Techniques Discussions, 1–16. https://doi.org/10.5194/amt-2018-436
Buma, W. G., & Lee, S. Il. (2020). Evaluation of Sentinel-2 and Landsat 8 images for estimating Chlorophyll-a concentrations in Lake Chad, Africa. Remote Sensing, 12(15). https://doi.org/10.3390/RS12152437
Callieco, F., & Dell’Acqua, F. (2011). A comparison between two radiative transfer models for atmospheric correction over a wide range of wavelengths. International Journal of Remote Sensing, 32(5), 1357–1370. https://doi.org/10.1080/01431160903547999
Carlson, R. A., & Simpson, J. (1996). A coordinator’s guide to volunteer lake monitoring methods: Madison. Wisconsin, North American Lake Management Society.
Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote sensing of environment, 24(3), 459-479.
Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric engineering and remote sensing, 62(9), 1025-1035.
Chen, J., Zhu, W., Tian, Y. Q., & Yu, Q. (2020). Monitoring dissolved organic carbon by combining Landsat-8 and Sentinel-2 satellites: Case study in Saginaw River estuary, Lake Huron. Science of the Total Environment, 718, 137374. https://doi.org/10.1016/j.scitotenv.2020.137374
Chen, L., Zhang, G., Xu, Y. J., Chen, S., Wu, Y., Gao, Z., & Yu, H. (2020). Human activities and climate variability affecting inland water surface area in a high latitude river basin. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020382
Chen, Q., Yu, R., Hao, Y., Wu, L., Zhang, W., Zhang, Q., & Bu, X. (2018). A new method for mapping aquatic vegetation especially underwater vegetation in Lake Ulansuhai using GF-1 satellite data. Remote Sensing, 10(8), 1279.
Clark, D. K., Gordon, H. R., Voss, K. J., Ge, Y., Broenkow, W., & Trees, C. (1997). Validation of atmospheric correction over the oceans. In JOURNAL OF GEOPHYSICAL RESEARCH (Vol. 102, Issue D14). Blackwell Publishing Ltd. https://doi.org/10.1029/96JD03345
Dalu, T., Dube, T., Froneman, P. W., Sachikonye, M. T. B., Clegg, B. W., & Nhiwatiwa, T. (2015). Geocarto International An assessment of chlorophyll-a concentration spatio-temporal variation using Landsat satellite data, in a small tropical reservoir. Taylor & Francis, 30(10), 1130–1143. https://doi.org/10.1080/10106049.2015.1027292
De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E., Reusen, I., Giardino, C., Bresciani, M., Hunter, P., Neil, C., Van Der Zande, D., & Vaiciute, & D. (2018). European Journal of Remote Sensing Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Taylor & Francis, 51(1), 525–542. https://doi.org/10.1080/22797254.2018.1457937
De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E., Reusen, I., Giardino, C., Bresciani, M., Hunter, P., Neil, C., Van der Zande, D., & Vaiciute, D. (2018). Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. European Journal of Remote Sensing, 51(1), 525–542. https://doi.org/10.1080/22797254.2018.1457937
Deines, A. M., Bunnell, D. B., Rogers, M. W., Bennion, D., Woelmer, W., Sayers, M. J., Grimm, A. G., Shuchman, R. A., Raymer, Z. B., Brooks, C. N., Mychek-Londer, J. G., Taylor, W., & Douglas Beard Jr, T. (2017). The contribution of lakes to global inland fisheries harvest. Front Ecol Environ, 15(6), 293–298. https://doi.org/10.1002/fee.1503
Duffy, K., Vandal, T., Wang, W., Nemani, R., & Ganguly, A. R. (2019). Deep learning emulation of multi-angle implementation of atmospheric correction (MAIAC). ArXiv, 1–10.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., & Bugliaro, L. (2016). The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev, 9, 1647–1672. https://doi.org/10.5194/gmd-9-1647-2016
ENVI, 2009. ENVI Atmospheric Correction Module: QUAC and FLAASH user’s guide. Modul. Version 44.
Fan, Y., Li, W., Gatebe, C. K., Jamet, C., Zibordi, G., Schroeder, T., & Stamnes, K. (2017). Atmospheric correction over coastal waters using multilayer neural networks. Remote Sensing of Environment, 199, 218-240.
Gao, B. C., Montes, M. J., Ahmad, Z., & Davis, C. O. (2000). Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Applied optics, 39(6), 887-896.
GeethaNK, SekarP, (2017). Numerical Methods-Engineering Applications. International Journal of ChemTech Research, 10(10), 248-256.
Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics, 33(3), 443. https://doi.org/10.1364/ao.33.000443
Griffin, C. G., Frey, K. E., Rogan, J., & Holmes, R. M. (2011). Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Wiley Online Library, 116(3). https://doi.org/10.1029/2010JG001634
Guanter, L., González-Sanpedro, M. D. C., & Moreno, J. (2007). A method for the atmospheric correction of ENVISAT/MERIS data over land targets. International Journal of Remote Sensing, 28(3–4), 709–728. https://doi.org/10.1080/01431160600815525
Guanter, L., Ruiz-Verdú, A., Odermatt, D., Giardino, C., Simis, S., Estellés, V., ... & Moreno, J. (2010). Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes. Remote Sensing of Environment, 114(3), 467-480.
Guanter, Luis. (2006). New algorithms for atmospheric correction and retrieval of biophysical parameters in Earth Observation . Application to ENVISAT / MERIS data. 285.
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2015). A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENµS and Sentinel-2 Images. Mdpi.Com, 7, 2669. https://doi.org/10.3390/rs70302668
Holben, B. R. E. N. T. N., Vermote, E., Kaufman, Y. J., Tanré, D., & Kalb, V. (1992). Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 212-222.
Hu, C., Carder, K. L., & Muller-Karger, F. E. (2000). Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method. Remote sensing of environment, 74(2), 195-206.
Huimei Ding, L., Shi, J., Wang, Y., Wei, L., Ding, H., (2015). An improved dark-object subtraction technique for atmospheric correction of Landsat 8. In MIPPR 2015: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications (Vol. 9815, p. 98150K). International Society for Optics and Photonics.
Iafe, A. D. (2012). SIMEC Background : Workflow. 5–8.
Ilori, C., Pahlevan, N., & Knudby, A. (2019). Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sensing, 11(4), 469. https://doi.org/10.3390/rs11040469
Iqbal, M., 2012. An introduction to solar radiation.
Jajarmi, A., Ghanbari, B., Baleanu, D., 2019. A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos 29(9). https://doi.org/10.1063/1.5112177
Keith, D., Rover, J., Green, J., Zalewsky, B., Charpentier, M., Thursby, G., & Bishop, J. (2018). Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager. International journal of remote sensing, 39(9), 2818-2846.
Kleynhans, T., Montanaro, M., Gerace, A., & Kanan, C. (2017). Predicting top-of-atmosphere thermal radiance using MERRA-2 atmospheric data with deep learning. Remote Sensing, 9(11), 1–16. https://doi.org/10.3390/rs9111133
Kotchenova, S. Y., Vermote, E. F., Levy, R., & Lyapustin, A. (2008). Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Applied Optics, 47(13), 2215–2226. https://doi.org/10.1364/AO.47.002215
Kravitz, J., Matthews, M., Bernard, S., & Griffith, D. (2020). Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sensing of Environment, 237. https://doi.org/10.1016/j.rse.2019.111562
Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., & Butman, D. (2019). Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 224(February), 104–118. https://doi.org/10.1016/j.rse.2019.01.023
Kutser, T., Pierson, D. C., Tranvik, L., Reinart, A., Sobek, S., & Kallio, K. (2005). Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems, 8(6), 709–720. https://doi.org/10.1007/s10021-003-0148-6
Landsat 8-9 Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 Level 1 (L1) Data Format Control Book (DFCB). (2020).
Lantzanakis, G., Mitraka, Z., & Chrysoulakis, N. (2017). Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery. In Perspectives on atmospheric sciences (pp. 255-261). Springer, Cham.
Lavender, S. J., Pinkerton, M. H., Moore, G. F., Aiken, J., & Blondeau-Patissier, D. (2005). Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters Centre for Observation of Air-Sea Interactions and Fluxes (CASIX). Continental Shelf Research, 25, 539–555. https://doi.org/10.1016/j.csr.2004.10.007
Li, F., Jupp, D. L. B., Sagar, S., Wang, L. W., & Coghlan, R. (2017). Atmospheric correction for a Landsat and Sentinel-2 product over water surfaces. Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM 2017, December, 971–977. https://doi.org/10.36334/modsim.2017.g9.li
Li, F., Jupp, D., Sagar, S., & Schroeder, T. (2019, July). Atmospheric Correction and Water Surface Issues for Aquatic Applications of Landsat 8. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 6899-6902). IEEE.
Li, H., He, X., Bai, Y., Shanmugam, P., Park, Y. J., Liu, J., Zhu, Q., Gong, F., Wang, D., & Huang, H. (2020). Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans. Remote Sensing of Environment, 249(July), 112022. https://doi.org/10.1016/j.rse.2020.112022
Li, Y., Zhang, Y., Shi, K., Zhu, G., Zhou, Y., Zhang, Y., & Guo, Y. (2017). Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Science of the Total Environment, 599–600, 1705–1717. https://doi.org/10.1016/j.scitotenv.2017.05.075
Li, Z., Roy, D. P., Zhang, H. K., Vermote, E. F., & Huang, H. (2019). Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sensing, 11(2), 1–14. https://doi.org/10.3390/rs11020122
Liu, A., Liu, L., & Liu, X. (2016). A new atmospheric correction method based on ANN in hyperspectral remote sensing image. 4th International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2016 - Proceedings, 57–61. https://doi.org/10.1109/EORSA.2016.7552766
Lu, Z., Li, J., Shen, Q., Zhang, B., Zhang, H., Zhang, F., & Wang, S. (2018). Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters. PLOS ONE, 13(8), e0202883. https://doi.org/10.1371/journal.pone.0202883
Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., G.Hall, F., Sellers, P. J., Tucker, C. J., & Korkin, S. V. (2012). Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sensing of Environment, 127, 385–393. https://doi.org/10.1016/j.rse.2012.09.002
Mayer, B., & Kylling, A. (2005). Technical note: The libRadtran software package for radiative transfer calculations - Description and examples of use. In Atmospheric Chemistry and Physics (Vol. 5, Issue 7, pp. 1855–1877). European Geosciences Union. https://doi.org/10.5194/acp-5-1855-2005
McCullough, I. M., Cheruvelil, K. S., Collins, S. M., & Soranno, P. A. (2019). Geographic patterns of the climate sensitivity of lakes. Ecological Applications, 29(2), e01836. https://doi.org/10.1002/eap.1836
Menken, K. D., Brezonik, P. L., & Bauer, M. E. (2009). Lake and Reservoir Management Influence of Chlorophyll and Colored Dissolved Organic Matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing. Taylor & Francis, 22(3), 179–190. https://doi.org/10.1080/07438140609353895
Mishra, D. R., Ogashawara, I., & Gitelson, A. A. (Eds.). (2017). Bio-optical modeling and remote sensing of inland waters. Elsevier.
Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394-406.
Millennium ecosystem assessment, M. E. A. (2005). Ecosystems and human well-being (Vol. 5). Washington, DC: Island press.
Murray, N. J., Keith, D. A., Simpson, D., Wilshire, J. H., & Lucas, R. M. (2018). Remap: An online remote sensing application for land cover classification and monitoring. Methods Ecol Evol, 9, 2019–2027. https://doi.org/10.1111/2041-210X.13043
Mushtaq, F., Ghosh, M., & Lala, N. (2017). Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto International, 32(3), 274–285. https://doi.org/10.1080/10106049.2016.1140818
Nurgiantoro, Muliddin, Kurniadin, N., Putra, A. Y. S. I., Azharuddin, M., Hasan, J., Hardianto, & Langumadi, M. I. Y. (2019). Assessment of atmospheric correction results by iCOR for MSI and OLI data on TSS concentration. IOP Conference Series: Earth and Environmental Science, 389(1). https://doi.org/10.1088/1755-1315/389/1/012001
Olmanson, L. G., Brezonik, P. L., Finlay, J. C., & Bauer, M. E. (2016). Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 119–128. https://doi.org/10.1016/j.rse.2016.01.007
Ouma, Y. O., Noor, K., & Herbert, K. (2020). Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. Journal of Sensors, 2020.
Pahlevan, N., Mangin, A., Balasubramanian, S. V., Smith, B., Alikas, K., Arai, K., ... & Warren, M. (2021). ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sensing of Environment, 258, 112366.
Palmer, S. C., Kutser, T., & Hunter, P. D. (2015). Remote sensing of inland waters: Challenges, progress and future directions.
Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10(2), 252–271. https://doi.org/10.1016/0021-9991(72)90065-4
Pu, F., Ding, C., Chao, Z., Yu, Y., & Xu, X. (2019). Water-quality classification of inland lakes using Landsat8 images by convolutional neural networks. Remote Sensing, 11(14), 1674.
Rinke, K., Keller, P. S., Kong, X., Borchardt, D., & Weitere, M. (2019). Ecosystem services from inland waters and their aquatic ecosystems. In Atlas of Ecosystem Services (pp. 191-195). Springer, Cham.
Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric engineering & remote sensing, 69(6), 695-704.
Ruddick, K. G., De Cauwer, V., Park, Y.-J., & Moore, G. (2006). Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr, 51(2), 2006, 1167–1179.
Ruddick, K. G., Ovidio, F., & Rijkeboer, M. (2000). Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied optics, 39(6), 897-912.
Sayuri, F., Watanabe, Y., Alcântara, E., Walesza, T., Rodrigues, P., Nobuhiro Imai, N., Clemente, C., Barbosa, F., Henrique Da, L., & Rotta, S. (2014). Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images. Int. J. Environ. Res. Public Health, 12, 12. https://doi.org/10.3390/ijerph120910391
Schroeder, T., Behnert, I., Schaale, M., Fischer, J., & Doerffer, R. (2007). Atmospheric correction algorithm for MERIS above case‐2 waters. International Journal of Remote Sensing, 28(7), 1469-1486.
Schroeder, Thomas, Fischer, J., Schaale, M., & Fell, F. (2003). Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data. Ocean Remote Sensing and Applications, 4892(May), 124. https://doi.org/10.1117/12.467293
Sharma, A., Liu, X., Yang, X., & Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification. Neural Networks, 95, 19–28. https://doi.org/10.1016/j.neunet.2017.07.017
Sivakumar, M. V. K. (2003). Satellite remote sensing and GIS applications in agricultural meteorology.
Song, K., Li, L., & Xu, J. (2011). Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Article in Environmental Monitoring and Assessment, 184(3), 1449–1470. https://doi.org/10.1007/s10661-011-2053-3
Spyrakos, E., O’Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G. H., Neil, C., Barbosa, C. C. F., Binding, C. E., Bradt, S., Bresciani, M., Dall’Olmo, G., Giardino, C., Gitelson, A. A., Kutser, T., Li, L., Matsushita, B., Martinez-Vicente, V., Matthews, M. W., … Tyler, A. N. (2018). Optical types of inland and coastal waters. Limnology and Oceanography, 63(2), 846–870. https://doi.org/10.1002/lno.10674
Steinmetz, F., & Ramon, D. (2018). Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER. In R. J. Frouin & H. Murakami (Eds.), Remote Sensing of the Open and Coastal Ocean and Inland Waters (Vol. 10778, p. 13). SPIE. https://doi.org/10.1117/12.2500232
Sterckx, S., Knaeps, S., Kratzer, S., & Ruddick, K. (2015). SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sensing of Environment, 157, 96–110. https://doi.org/10.1016/j.rse.2014.06.017
Sterckx, S, Knaeps, E., Ruddick, K., Kratzer, S., & Ruescas, A. (2013). Validation SIMEC adjacency correction for Coastal and Inland Waters. 225–226.
Sterckx, S., Knaeps, E., Adriaensen, S., Reusen, I., De Keukelaere, L., Hunter, P., ... & Odermatt, D. (2015, June). OPERA: An atmospheric correction for land and water. In Proceedings of the Sentinel-3 for Science Workshop (Vol. 1, pp. 3-6).
Syariz, M. A., Lin, C. H., Van Nguyen, M., Jaelani, L. M., & Blanco, A. C. (2020). WaterNet: A convolutional neural network for chlorophyll-a concentration retrieval. Remote Sensing, 12(12), 1–16. https://doi.org/10.3390/rs12121966
Tempfli, K., Kerle, N., Huurneman, G. C., Janssen, L. L. F., Bakker, W. H., Feringa, W., Gieske, A. S. M., Gorte, B. G. H., Grabmaier, K. A., Hecker, C. A., Horn, J. A., Huurneman, G. C., Janssen, L. L. F., Kerle, N., Meer, F. D. Van Der, Parodi, G. N., Pohl, C., Reeves, C. V, Ruitenbeek, F. J. Van, … Woldai, T. (2013). AGERE! 2013 - Programming Based on Actors, Agents, and Decentralized Control. In Proceedings of the 2013 ACM Workshop.
Themistocleous, K., Hadjimitsis, D. G., Retalis, A., & Chrysoulakis, N. (2012). Development of a new image based atmospheric correction algorithm for aerosol optical thickness retrieval using the darkest pixel method. Journal of Applied Remote Sensing, 6(1), 063538.
Tonooka, H. (2001). An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method. IEEE Transactions on Geoscience and Remote Sensing, 39(3), 682-692.
Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., & Tsakalides, P. (2019). Survey of deep-learning approaches for remote sensing observation enhancement. Sensors (Switzerland), 19(18), 1–39. https://doi.org/10.3390/s19183929
U.S. Geological Survey. (2016). Landsat 8 Data Users Handbook. Nasa, 8(June), 97.
Väisänen, T., Markkanen, J., Penttilä, A., & Muinonen, K. (2019). Radiative transfer with reciprocal transactions: Numerical method and its implementation. PLoS ONE, 14(1). https://doi.org/10.1371/journal.pone.0210155
Vanhellemont, Q. (2019). Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sensing of Environment, 225(October 2018), 175–192. https://doi.org/10.1016/j.rse.2019.03.010
Vanhellemont, Q., & Ruddick, K. (2015). Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment, 161, 89–106. https://doi.org/10.1016/j.rse.2015.02.007
Vanhellemont, Q., & Ruddick, K. (2016, May). Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic (pp. 9-13).
Vanhellemont, Q., & Ruddick, K. (2018). Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sensing of Environment, 216(July), 586–597. https://doi.org/10.1016/j.rse.2018.07.015
Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research: Atmospheres, 113(D23).
Vermote, E F, El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J. L., Remer, L., Roger, J. C., & Tanr, D. (1997). Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. In Wiley Online Library. https://doi.org/10.1029/97JD00201
Vermote, Eric F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research Atmospheres, 113(23). https://doi.org/10.1029/2007JD009662
Verrelst, J., Vicent, J., Rivera-Caicedo, J. P., Lumbierres, M., Morcillo-Pallarés, P., & Moreno, J. (2019). Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data. Remote Sensing, 11(16), 1923. https://doi.org/10.3390/rs11161923
Vicent, J., Sabater, N., Verrelst, J., Alonso, L., & Moreno, J. (2017). Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence. Remote Sensing, 9(7), 675. https://doi.org/10.3390/rs9070675
Vicent, J., Verrelst, J., Sabater, N., Alonso, L., Pablo Rivera-Caicedo, J., Martino, L., Muñoz-Marí, J., & Moreno, J. (2020). Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0). Geoscientific Model Development, 13(4), 1945–1957. https://doi.org/10.5194/gmd-13-1945-2020
VITO Remote Sensing Unit. (2019). iCOR Landsat-8 and Sentinel-2 plugin for SNAP toolbox: Software User Manual. 05/02/2019, 1–21. https://blog.vito.be/remotesensing/icor_available
Wang, D., Ma, R., Xue, K., & Loiselle, S. A. (2019). The assessment of landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020169
Wang, X. F., Mao, Z. H., & Chen, J. Y. (2011). Atmospheric correction of the SPOT satellite data of the coastal zones. Journal of Marine Sciences, 29(1), 68-72.
Warren, M. A., Simis, S. G. H., Martinez-Vicente, V., Poser, K., Bresciani, M., Alikas, K., Spyrakos, E., Giardino, C., & Ansper, A. (2019). Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment, 225(September 2018), 267–289. https://doi.org/10.1016/j.rse.2019.03.018
West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M., & Milton, R. L. (1987). A new numerical method for surface hydrodynamics. Journal of Geophysical Research, 92(C11), 11803. https://doi.org/10.1029/JC092iC11p11803
Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science, 11(1), 31–50.
Xu, F., Cervone, G., Franch, G., & Salvador, M. (2020). Multiple geometry atmospheric correction for image spectroscopy using deep learning. Journal of Applied Remote Sensing, 14(02), 1. https://doi.org/10.1117/1.jrs.14.024518
Yip, H. D., Johansson, J., & Hudson, J. J. (2015). A 29-year assessment of the water clarity and chlorophyll-a concentration of a large reservoir: Investigating spatial and temporal changes using Landsat imagery. Journal of Great Lakes Research, 41, 34-44.
Zahidi, U. A., Chatterjee, A., & Yuen, P. W. T. (2019). A Radiative Transfer Model-Based Multi-Layered Regression Learning to Estimate Shadow Map in Hyperspectral Images. Machine Learning and Knowledge Extraction, 1(3), 904–927. https://doi.org/10.3390/make1030052
Zhang, H., Yang, X., & Xu, D. (2019). A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation. Numerical Algorithms, 80(3), 849–877. https://doi.org/10.1007/s11075-018-0509-z
Zhang, T., Huang, M., & Wang, Z. (2020). Estimation of chlorophyll-a Concentration of lakes based on SVM algorithm and Landsat 8 OLI images. Environmental Science and Pollution Research, 27(13), 14977–14990. https://doi.org/10.1007/s11356-020-07706-7
Zhang, Z., He, G., & Wang, X. (2010). A practical DOS model-based atmospheric correction algorithm. International Journal of Remote Sensing, 31(11), 2837-2852.
Zhou, M., Zhang, L., Chen, D., Gu, Y., Fu, T. M., Gao, M., ... & Zhao, B. (2019). The impact of aerosol–radiation interactions on the effectiveness of emission control measures. Environmental Research Letters, 14(2), 024002.