簡易檢索 / 詳目顯示

研究生: 羅翊慈
Lo, I-Tzu
論文名稱: 酸性環境下硝酸鹽電催化還原合成羥胺之研究
A study on the synthesis of hydroxylamine from the electrocatalytic reduction of nitrate at acidic conditions
指導教授: 林家裕
Lin, Chia-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 91
中文關鍵詞: 鉍修飾電極無電鍍硝酸根還原羥胺電合成酸性硝酸根還原
外文關鍵詞: Bismuth modified electrode, Electroless plating, Nitrate reduction, hydroxylamine electrosynthesis
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 羥胺(NH2OH)是化學工業的重要含氮原料。傳統的羥胺合成方法利用氨作為氮源,需要苛刻的反應條件,導致不利的環境影響。取而代之在這裡我們使用電催化合成羥胺,但由於 NH2OH 作為中間體的不穩定性,高價值羥胺的選擇性合成具有挑戰性。在這項工作中,我們展示了本質上具有較好羥胺脫附能力的Bi,在酸性條件下選擇性和快速地將硝酸鹽還原為羥胺。基材選用酸性下耐腐蝕之Ti、Cu、C結合電鍍Bi,結果顯示在-0.4vsRHECu/Bi羥胺達FE77.8%; 在-0.6vsRHE C/Bi 羥胺達FE81.2%後續針對Ti/Bi雙金屬效應去做改善分別探討電鍍Bi、無電鍍Bi、電解液含有200ppmBi離子於不同電位下電催化效應結果顯示在-0.6vsRHE羥胺FE: 200ppmBi 76.83%、無電鍍鈦鉍達70.1%。由於無電鍍鈦鉍有良好的電催化活性,後續對無電鍍Ti/Bi探討材料成長機制,發現不同結構的變化。總的來說,我們的工作提供了一種在更溫和的條件下從更簡單的原料高效合成羥胺的可行方法,為化學工業的可持續轉型做出了貢獻。

    Hydroxylamine (NH₂OH) is a valuable nitrogen-containing intermediate widely used in chemical manufacturing. Conventional synthesis routes typically rely on ammonia as the nitrogen source and require harsh reaction conditions, resulting in significant environmental burdens. In this study, we present an electrocatalytic approach for the selective synthesis of hydroxylamine under mild acidic conditions. Bismuth (Bi), known for its favorable NH₂OH desorption properties, was employed as the active catalyst. Electroplated Bi on corrosion-resistant substrates (Ti, Cu, and C) demonstrated high Faradaic efficiencies (FE), achieving 77.8% on Cu/Bi at −0.4 V vs RHE and 81.2% on C/Bi at −0.6 V vs RHE.
    Further optimization explored the bimetallic Ti/Bi system, comparing electroplated Bi, non-electroplated Bi, and electrolytes containing 200 ppm Bi ions. At −0.6 V vs RHE, hydroxylamine FE reached 76.83% with Bi ions and 70.1% with non-electroplated Ti/Bi. The latter exhibited promising electrocatalytic activity, prompting investigation into its growth mechanism and structural evolution.
    Overall, this work offers a sustainable and efficient strategy for hydroxylamine production from simpler precursors, contributing to greener practices in the chemical industry.

    摘要 I Extended Abstract II 誌謝 XII 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 羥胺價值與工業需求 3 1.3 NO3RR電合成羥胺 5 1.3.1 硝酸根的危害 5 1.3.2 NO3RR 6 1.4 研究動機 7 第二章 原理與文獻回顧 9 2.1 NO3RR電催化的反應機制 9 2.2 NH2OH選擇性的困難 11 2.21 NH2OH脫附能力 13 2.22 NH2OH還原能力 14 2.23 NH2OH脫附能力/還原能力 16 2.24 NH2OH脫附能力 17 2.3 產物分析方法 18 2.31氨 18 2.32羥胺 19 第三章 實驗方法 22 3.1 實驗藥品 22 3.2 實驗設備 24 3.3 溶液配置 25 3.4 工作電極材料的製備 26 3.5 電化學分析系統架設 28 3.6 產物定量分析 30 3.61 氣相層析儀(Gas Chromatography,GC) 30 3.62 離子層析儀(Ion Chromatography, IC) 31 3.63 UV比色法 紫外可見分光光度法UV-Vis spectrophotometry 32 3.7. 計算產物之公式 35 3.8 觸媒之物性分析 36 3.81 X光繞射儀(X-ray diffractometer, XRD) 36 3.8.2 掃描式電子顯微鏡(Scanning electron microscope, SEM) 36 3.8.3 感應耦合電漿光學發射光譜儀(Inductively coupled plasma-optical emission spectrometry, ICP-OES) 37 3.8.4拉曼光譜儀(Raman spectroscopy) 37 第四章 結果與討論 38 4.1 電鍍Bi之基材效應 38 4.1.1 晶相與形貌分析 38 4.1.2 觸媒性能比較(-0.4vsRHE) 41 4.1.3 觸媒性能比較(-0.6vsRHE) 42 4.1.4 觸媒性能比較(-0.8vsRHE) 43 4.2 不同Bi結構之鈦基材 45 4.2.1 晶相與形貌分析 45 4.2.2 觸媒性能比較(-0.8vsRHE) 47 4.2.3 觸媒性能比較(-0.6vsRHE) 49 4.2.4 觸媒性能比較(-0.4vsRHE) 51 4.2.5 觸媒性能比較(-0.2vsRHE) 53 4.2.6 觸媒性能比較(-0.1vsRHE) 54 4.2.7 無電鍍Ti/Bi 不同電位下性能表現 55 4.2.8 200ppm Bi 不同電位下性能表現 56 4.3無電鍍Ti/Bi成長機制與優化 58 4.31無電鍍Ti/Bi反應時間 58 4.32晶相與Raman分析 59 第五章 結論與未來展望 61 5.1 結論 61 5.2 建議與未來展望 62 第六章 附錄 63 第七章 參考文獻 64

    1. Chem. Rev. 2009, 109, 6, 2209–2244
    2. Energy Environ. Sci., 2024,17, 2682-2685.
    3. Buuml, Chel K. H., Moretto H.-H., Werner D. Industrial Inorganic Chemistry, 1. Aufl. edn. Wiley-VCH (2008)
    4. Adarakatti, P. S., Crapnell, R. D. & Banks, C. E. Electroanalytical overview: the sensing of hydroxylamine. Anal. Methods 15, 2709–2720 (2023).
    5. ACS Sustainable Chem. Eng. 2023, 11, 37, 13636–13645
    6. Kong, X., Ni, J., Song, Z. et al. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway. Nat Sustain 7, 652–660 (2024).
    7. Angewandte Chemie Volume63, Issue14,April 2, 2024,e202317167
    8. Garg D, Mallick L, Kundu A, Chakraborty B. In Situ Spectroscopic Probing of the Hydroxylamine Pathway of Electrocatalytic Nitrate Reduction on Iron-Oxy-Hydroxide. Small. 2025 Mar;21(10):e2412606
    9. ACS Sustainable Chem. Eng. 2023, 11, 37, 13636–13645
    10. Tang, Y., Jiang, Z., Yuan, Y. et al. Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction. Nat Commun 15, 9800 (2024).
    11. Zhong W, Hong QL, Ai X, Zhang C, Li FM, Li XF, Chen Y. RhNi Bimetallenes with Lattice-Compressed Rh Skin towards Ultrastable Acidic Nitrate Electroreduction. Adv Mater. 2024 Jun;36(23):e2314351.
    12. Zhang, R., Li, C., Cui, H. et al. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells. Nat Commun 14, 8036 (2023).
    第一章節
    13. Chem. Soc. Rev., 2022,51, 2710-2758
    14. Y. Zeng, C. Priest, G. Wang and G. Wu, Small Methods, 2020, 4, 2000672
    15. Kong, X., Nat Sustain 7, 652–660 (2024).
    16. Tang, Y., Nat Commun 15, 9800 (2024).
    17. ACS Nano 2025, 19, 10, 10489–10499
    18. J. Am. Chem. Soc. 2025, 147, 17, 14869–14877
    19. K. Hu, Z. Huang, L. Zeng, Z. Zhang, L. Mei, Z. Chai, W. Shi, Eur. J. Inorg. Chem. 2022, e202100748.
    20. Aina Soler-Jofra, Julio Pérez, Mark C.M. van Loosdrecht,Hydroxylamine and the nitrogen cycle: A review,Water Research,Volume 190,2021,116723,ISSN 0043-1354,

    21. https://www.chegg.com/homework-help/questions-and-answers/chemistry-lab-experiment-quantification-iron-anemia-pills-please-fill-blanks-following-pic-q42306028
    22. Egbert, J. D.; Thomsen, E. C.; O’Neill-Slawecki, S. A.; Mans, D. M.; Leitch, D. C.; Edwards, L. J.; Wade, C. E.; Weber, R. S. Development and Scale-up of Continuous Electrocatalytic Hydrogenation of Functionalized Nitro Arenes, Nitriles, and Unsaturated Aldehydes. Org. Process Res. Dev. 2019, 23 (9), 1803–1812.
    23. Beck, F. Electrosynthesis of Adiponitrile in Undivided Cells. J Appl Electrochem 1972, 2 (1), 59–69.
    24. Blanco, D. E.; Atwi, R.; Sethuraman, S.; Lasri, A.; Morales, J.; Rajput, N. N.; Modestino, M. A. Effect of Electrolyte Cations on Organic Electrosynthesis: The Case of Adiponitrile Electrochemical Production. J. Electrochem. Soc. 2020, 167 (15), 155526.
    25. Suwanvaipattana, P.; Limtrakul, S.; Vatanatham, T.; Ramachandran, P. A. Modeling of Electro-Organic Synthesis to Facilitate Cleaner Chemical Manufacturing: Adiponitrile Production. Journal of Cleaner Production 2017, 142, 1296–1308.
    26. Andrews, E.; Lopez-Ruiz, J. A.; Egbert, J. D.; Koh, K.; Sanyal, U.; Song, M.; Li, D.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J.; Gutiérrez, O. Y.; Holladay, J. D. Performance of Base and Noble Metals for Electrocatalytic Hydrogenation of Bio-Oil-Derived Oxygenated Compounds. ACS Sustainable Chem. Eng. 2020, 8 (11), 4407–4418.
    27. Ibn Shamsah, S. M. Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts 2021, 11 (4), 429.
    28. Blanco, D. E.; Lee, B.; Modestino, M. A. Optimizing Organic Electrosynthesis through Controlled Voltage Dosing and Artificial Intelligence. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (36), 17683–17689.
    29. Wu, S.; Zhang, H.; Huang, X.; Liao, Q.; Wei, Z. Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Ind. Eng. Chem. Res. 2021, 60 (23), 8324–8330.
    30. Karimi, F.; Mohammadi, F.; Ashrafizadeh, S. N. An Experimental Study of the Competing Cathodic Reactions in Electrohydrodimerization of Acrylonitrile. J. Electrochem. Soc. 2011, 158 (12), E129.
    31. Su, J.-S.; Huang, S.-C.; Tsai, M.-C.; Yen, C.-H.; Lin, C.-Y. Efficient and Selective Electrosynthesis of Adiponitrile from Electrohydrodimerization of Acrylonitrile over the Bismuth Nanosheets Modified Electrode. Green Chemistry 2024.
    32. Baumann, M.; Moody, T. S.; Smyth, M.; Wharry, S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org. Process Res. Dev. 2020, 24 (10), 1802–1813.
    33. Mazzarella, D. Asymmetric Electrochemical Synthesis in Flow. J Flow Chem 2024, 14 (1), 357–366.
    34. Noël, T.; Cao, Y.; Laudadio, G. The Fundamentals Behind the Use of Flow Reactors in Electrochemistry. Acc. Chem. Res. 2019, 52 (10), 2858–2869.
    35. Pletcher, D.; Green, R. A.; Brown, R. C. D. Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem. Rev. 2018, 118 (9), 4573–4591.
    36. Chen, M.; Zhao, F.; Fan, W.; Li, J.; Guo, X. Proof-of-Concept Study of a New Microflow Electrochemical Cell Design for Gas-Evolving Reactions. Ind. Eng. Chem. Res. 2022, 61 (10), 3781–3787.
    37. Djokić, S. S.; Prashanthi, K.; Thundat, T. Electroless Deposition of Bismuth Containing Films on Copper and Silver Substrates from KBiI4 Solutions. Electrochem. Solid-State Lett. 2012, 15 (5), D23.
    38. Zhang, X.; Sun, X.; Guo, S.-X.; Bond, A. M.; Zhang, J. Formation of Lattice-Dislocated Bismuth Nanowires on Copper Foam for Enhanced Electrocatalytic CO2 Reduction at Low Overpotential. Energy Environ. Sci. 2019, 12 (4), 1334–1340.
    39. McDonald, K. J.; Choi, K.-S. A New Electrochemical Synthesis Route for a BiOI Electrode and Its Conversion to a Highly Efficient Porous BiVO4 Photoanode for Solar Water Oxidation. Energy Environ. Sci. 2012, 5 (9), 8553.
    40. Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Deciding Whether To Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis. Angew Chem Int Ed 2011, 50 (33), 7502–7519.
    41. Qi, J.; An, Z.; Chen, X.; Li, C.; Du, Y.; Zhang, X.; Liang, C. Paired Electrolysis of Acrylonitrile and 5-Hydroxymethylfurfural for Simultaneous Generation of Adiponitrile and 2,5-Furandicarboxylic Acid. Catalysts 2022, 12 (7), 694.
    42. Sherine, J.; Indubala, E.; Rajagopal, R.; Harinipriya, S. Organic Ligand Capping of CuI for Enhanced Electrical and Ionic Conductivity. Journal of Materials Research and Technology 2019, 8 (2), 2326–2335.
    43. Singh, S.; Sahoo, R. K.; Shinde, N. M.; Yun, J. M.; Mane, R. S.; Chung, W.; Kim, K. H. Asymmetric Faradaic Assembly of Bi2O3 and MnO2 for a High-Performance Hybrid Electrochemical Energy Storage Device. RSC Adv. 2019, 9 (55), 32154–32164.
    44. Jia, M.; Newberg, J. T. Surface Chemistry of Liquid Bismuth under Oxygen and Water Vapor Studied by Ambient Pressure X-Ray Photoelectron Spectroscopy. Applied Surface Science 2021, 539, 148219.
    45. Karimi, F.; Ashrafizadeh, S. N.; Mohammadi, F. Process Parameter Impacts on Adiponitrile Current Efficiency and Cell Voltage of an Electromembrane Reactor Using Emulsion-Type Catholyte. Chemical Engineering Journal 2012, 183, 402–407.
    46. Scott, K.; Hayati, B. The Influence of Mass Transfer on the Electrochemical Synthesis of Adiponitrile. Chemical Engineering and Processing: Process Intensification 1993, 32 (4), 253–260.
    47. Scott, K.; Hayati, B. The Multiphase Electrochemical Synthesis of Adiponitrile. Chemical Engineering Science 1990, 45 (8), 2341–2347.
    48. Li, B.-Y.; Huang, W.-F.; Yang, M.-C. Electrodimerization of Acrylonitrile with a Rotating Rod Electrode. Journal of the Taiwan Institute of Chemical Engineers 2020, 115, 13–19.
    49. Baizer, M. M. Electrolytic Reductive Coupling: I . Acrylonitrile. J. Electrochem. Soc. 1964, 111 (2), 215.
    50. Kinlen, P. J.; King, C. J. H. Mechanistic Studies of the Electrohydrodimerization of Acrylonitrile. J. Electroanal. Chem. Interf. Electrochem. 1991, 304, 133–151.
    51. Parsons, R. Atlas of Electrochemical Equilibria in Aqueous Solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1967, 13 (4), 471.
    52. Martın-Gonzalez, M. S.; Prieto, A. L.; Gronsky, R.; Sands, T.; Stacy, A. M. Insights into the Electrodeposition of Bi2Te3. Journal of The Electrochemical Society. 2002, 149, C546.
    53. Ong, P. S.; Huang, S.-C.; Lin, C.-Y.; Lerkkasemsan, N. Efficient and Selective Electrosynthesis of 4-Aminophenol at Circumneutral pH from the Electrocatalytic Reduction of Nitrophenol over the Nickel-Iron Phosphide Modified Electrode. Materials Today Sustainability 2023, 24, 100547.
    54. Huang, S.-C.; You, Z.-X.; Jhang, S.-M.; Lin, C.-Y. Facile Electrochemical Preparation of NiFeP Submicron-Spheres as an Efficient Electrocatalyst for the Electrochemical Hydrogenation of 4-Nitrophenol at Neutral pH. Journal of Environmental Chemical Engineering 2022, 10 (6), 108882.
    55. Kätelhön, E.; Chen, L.; Compton, R. G. Nanoparticle Electrocatalysis: Unscrambling Illusory Inhibition and Catalysis. Applied Materials Today 2019, 15, 139–144.
    56. Chen, L.; Kätelhön, E.; Compton, R. G. Unscrambling Illusory Inhibition and Catalysis in Nanoparticle Electrochemistry: Experiment and Theory. Applied Materials Today 2019, 16, 141–145.
    57. Li, F.; Han, G.-F.; Noh, H.-J.; Jeon, J.-P.; Ahmad, I.; Chen, S.; Yang, C.; Bu, Y.; Fu, Z.; Lu, Y.; Baek, J.-B. Balancing Hydrogen Adsorption/Desorption by Orbital Modulation for Efficient Hydrogen Evolution Catalysis. Nat Commun 2019, 10 (1), 4060.

    無法下載圖示 校內:2030-08-26公開
    校外:2030-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE