簡易檢索 / 詳目顯示

研究生: 席布肯
Singh, Pawan Kumar
論文名稱: 製備磁性氧化鋅@鐵酸錫奈米顆粒於還原石墨烯之複合材料於高效率吸附降解有機染劑之研究
Study of SnFe2O4@ZnO Decorated on reduced Graphene Oxide as Magnetic Nanocomposites with Highly Adsorption Efficiency of Organic Dyes
指導教授: 陳嘉勻
chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 76
外文關鍵詞: Adsorption, isotherms, nanocomposites, co-precipitation
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Synthesis of SnFe2O4@ZnO nanocomposite decorated with the reduced graphene oxide (rGO) showing highly efficient dye adsorption properties was successfully developed. Prior to the decoration process, the SnFe2O4@ZnO were synthesized by low-cost and simple co-precipitation method. The decoration of SnFe2O4@ZnO with rGO was conducted via facile ultrasonication and consecutive heat treatment. Adsorption efficiency of as-synthesized SnFe2O4@ZnO@rGO was identified using UV-Visible spectrometer under dark ondition and found to reach 90% after 20 min based on 16 wt.% rGO. The reusability of SnFe2O4@ZnO@rGO-16 was excellent because of the magnetic fatures SnFe2O4 which can be recycled using a magnet. In addition, the adsorption quilibrium was analyzed and represented via Langmuir, Freundlich and Dubinin-Radushkevich isotherms models. The kinetics data resented good correlation coefficient (R2) values of 0.993 orresponding to Freundlich isotherm models. The SnFe2O4@ZnO@rGO-16 nanocomposites were identified to
    own large surface area by BET 120.33 m2/g. The anocomposites were characterized by XRD, SEM, FTIR, RAMAN, PL, BET and Zeta Potential.

    Table of Contents Abstracts ...................................................................................................................... i Acknowledgement ...................................................................................................... ii Table of Contents .......................................................................................................iii List of Figures ............................................................................................................ vi List of Tables ............................................................................................................... x Chapter 1 Introduction ........................................................................................... 1 1.1 Overview ............................................................................................... 1 1.2 Motivation ............................................................................................. 3 1.3 Objectives ............................................................................................. 4 Chapter 2 Literature Review ................................................................................. 5 2.1 Adsorption ............................................................................................ 5 2.2 Factors affecting adsorption of dye ...................................................... 7 2.2.1 Effect of Solution pH ....................................................................... 8 2.2.2 Effect of initial dye concentration ................................................. 10 2.2.3 Effect of temperature ..................................................................... 11 2.2.4 Effect of amount of adsorbent ....................................................... 12 2.3 Adsorption efficiency on 2D materials of MOS2 ............................... 12 Chapter 3 Experimental Method ......................................................................... 15 3.1 Materials details .................................................................................. 15 3.2 Experimental Process.......................................................................... 17 3.2.1 Synthesis of SnFe2O4 nanoparticles ............................................... 17 3.2.2 Synthesis of SnFe2O4@ZnO nanocomposites ............................... 17 3.2.3 Synthesis of reduced Graphene Oxide@SnFe2O4@ZnO iv doi:10.6844/NCKU202001612 nanocomposites ......................................................................................... 17 3.3 Dye adsorption Testing ....................................................................... 19 3.4 Characterization Tools ........................................................................ 20 3.4.1 X-Ray Diffraction (XRD) .............................................................. 20 3.4.2 Ultrahigh Resolution Scanning Electron Microscope (UHR-SEM) 22 3.4.3 Energy Dispersive spectrometer (EDS) ......................................... 24 3.4.4 Photoluminescence spectroscopy (PL) .......................................... 25 3.4.5 UV-Visible Spectroscopy ............................................................... 26 3.4.6 Fourier Transform infrared spectroscopy (FTIR) .......................... 27 3.4.7 Raman spectroscopy ...................................................................... 29 3.4.8 Zeta-Potential Analysis .................................................................. 30 3.4.9 Superconducting Quantum Interference Device Vibrating Sample Magnetometer (SQUID-VSM) ................................................................. 32 3.4.10 Surface Area and prosmetric analyzer (BET) ................................ 34 Chapter 4 Results and Discussion ....................................................................... 35 4.1 Structure and characteristics analysis of SnFe2O4@ZnO@rGO nanocomposites ................................................................................................. 35 4.1.1 X-ray Diffraction (XRD) analysis ................................................. 35 4.1.2 SEM Analysis ................................................................................ 36 4.1.3 EDS Analysis ................................................................................. 38 4.1.4 Photoluminescence (PL) Analysis ................................................. 39 4.1.5 Fourier Transform Infrared Spectroscopy (FTIR) Analysis .......... 40 4.1.6 RAMAN Spectroscopy Analysis ................................................... 41 4.1.7 Zeta Potential Analysis .................................................................. 43 v doi:10.6844/NCKU202001612 4.1.8 Adsorption Mechanism .................................................................. 45 4.1.9 SQUID VSM Analysis ................................................................... 46 4.1.10 Surface area and porosimetric (BET) Analysis ............................. 48 4.2 Adsorption efficiency of organic dyes ................................................ 50 4.3 Kinetics isotherm models ................................................................... 63 4.4 Reusability and stability of SnFe2O4@ZnO@rGO-16 ....................... 65 Chapter 5 Conclusion .......................................................................................... 66 Chapter 6 Future Work ........................................................................................ 67 References ................................................................................................................. 68

    [1] M. M. Mohamed, M. Khairy, and S. Eid, “Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell,” J. Power Sources, vol. 304, pp. 255–265, 2016.
    [2] S. Thangavel, S. Thangavel, and N. Raghavan, “Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures,” J. Alloys Compd., vol. 665, pp. 107–112, 2016.
    [3] B. Ma, R. Cong, W. Gao, and T. Yang, “Photocatalytic overall water splitting over an open-framework gallium borate loaded with various cocatalysts,” CATCOM, vol. 71, pp. 17–20, 2015.
    [4] F. Han, V. Subba, R. Kambala, and M. Srinivasan, “Applied Catalysis A : General Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment : A review,” vol. 359, pp. 25–40, 2009.
    [5] H. Chen, J. Zhao, J. Wu, and G. Dai, “Isotherm , thermodynamic , kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae,” J. Hazard. Mater., vol. 192, no. 1, pp. 246–254, 2011.
    [6] F. Liu, Y. H. Leung, A. B. Djuris, A. Man, C. Ng, and W. K. Chan, “Native Defects in ZnO : Effect on Dye Adsorption and Photocatalytic Degradation,” 2013.
    [7] M. Toor and B. Jin, “Adsorption characteristics , isotherm , kinetics, and diffusion of modified natural bentonite for removing diazo dye,” Chem. Eng. J., vol. 187, pp. 79–88, 2012.
    [8] J. Zhu, Y. Wang, J. Liu, and Y. Zhang, “Facile One-Pot Synthesis of Novel Spherical Zeolite − Reduced Graphene Oxide Composites for Cationic Dye Adsorption,” 2014.
    [9] X. Ma, Y. Dai, L. Yu, and B. Huang, “Energy transfer in plasmonic photocatalytic composites,” no. April 2015, 2016.
    [10] S. Han, L. Hu, Z. Liang, S. Wageh, and A. A. Al-ghamdi, “One-Step Hydrothermal Synthesis of 2D Hexagonal Nanoplates of α-Fe2O3/Graphene Composites with Enhanced Photocatalytic Activity,” pp. 5719–5727, 2014.
    [11] Z. Chen, S. Liu, M. Yang, and Y. Xu, “Synthesis of Uniform CdS Nanospheres/Graphene Hybrid Nanocomposites and Their Application as Visible Light Photocatalyst for Selective Reduction of Nitro Organics in Water,” 2013.
    [12] C. Lee, S. Liu, L. Juang, C. Wang, M. Lyu, and S. Hung, “Application of titanate nanotubes for dyes adsorptive removal from aqueous solution,” vol. 148, pp. 756–760, 2007.
    [13] Y. Lu, M. Jiang, C. Wang, Y. Wang, and W. Yang, “Effects of Matrix and Functional Groups on Tylosin Adsorption onto Resins and Carbon Nanotubes,” 2013.
    [14] A. K. Geim and K. S. Novoselov, “The rise of graphene,” pp. 183–191.
    [15] R. Xu, H. Bi, G. He, J. Zhu, and H. Chen, “Synthesis of Cu-Fe3O4@graphene composite : A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol,” Mater. Res. Bull., vol. 57, pp. 190–196, 2014.
    [16] S. Cu, “Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity,”pp. 1564–1569, 2013.
    [17] S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene Oxide/MnO2” vol. 4, no. 5.
    [18] V. A. Online, “electromagnetic wave absorption properties,”pp. 765–777, 2013.
    [19] K. Kumar, M. Chitkara, I. Singh, D. Mehta, and S. Kumar, “Photocatalytic , optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route,” J. Alloys Compd., vol. 588, pp. 681–689, 2014.
    [20] J. M. Chem, “highly efficient and reusable photocatalysts for water treatment,” pp. 18359–18364, 2011.
    [21] L. Han, X. Zhou, L. Wan, Y. Deng, and S. Zhan, “Journal of Environmental Chemical Engineering Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light,” J. Environ. Chem. Eng., vol. 2, no. 1, pp. 123–130, 2014.
    [22] Y. Shen et al., “Facile solvothermal synthesis of MnFe2O4 hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FTIR,” CATCOM, vol. 68, pp. 11–14, 2015.
    [23] K. Lee and S. Lu, “degradation efficiency : SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process,” no. 4, pp. 12259–12267, 2015.
    [24] H. E. M. H. O. Mounkachi and A. B. R. M. E. K. Hlil, “New results on Magnetic Properties of Tin-Ferrite Nanoparticles,” pp. 1995–2002, 2012.
    [25] M. Amran, M. Salleh, D. Khalid, W. Azlina, W. Abdul, and A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes : A comprehensive review,” DES, vol. 280, no. 1–3, pp. 1–13, 2011.
    [26] A. Da, “Adsorption ᎏ from theory to practice,” 2001.
    [27] B. Koumanova, S. J. Allen, and B. Koumanova, “DECOLOURISATION OF WATER / WASTEWATER USING ADSORPTION ( REVIEW ),” pp. 175–192, 2005.
    [28] H. Ali, “Biodegradation of Synthetic Dyes — A Review,” no. September 2009, pp. 251–273, 2010.
    [29] R. Paper, “Non-conventional low-cost adsorbents for dye removal : A review,” vol. 97, pp. 1061–1085, 2006.
    [30] B. K. Nandi, A. Goswami, and M. K. Purkait,“Applied Clay Science Removal of cationic dyes from aqueous solutions by kaolin : Kinetic and equilibrium studies,” Appl. Clay Sci., vol. 42, no. 3–4, pp. 583–590, 2009.
    [31] S. Chowdhury, S. Chakraborty, and P. Saha, “Colloids and Surfaces B : Biointerfaces Biosorption of Basic Green 4 from aqueous solution by Ananas comosus ( pineapple ) leaf powder,” Colloids Surfaces B Biointerfaces, vol. 84, no. 2, pp. 520–527, 2011.
    [32] S. Dawood, T. K. Sen, and C. Phan, “Bioresource Technology Synthesis and characterization of slow pyrolysis pinecone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption : Kinetic , equilibrium , mechanism and thermodynamic,” Bioresour. Technol., vol. 246, pp. 76–81, 2017.
    [33] M. T. Yagub, T. K. Sen, and H. M. Ang, “Equilibrium , Kinetics , and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves,”pp. 5267–5282, 2012.
    [34] A. Adak, M. Bandyopadhyay, and A. Pal, “Removal of crystal violet dye from wastewater by surfactant-modified alumina,” vol. 44, pp. 139–144, 2005.
    [35] C. Weng and Y. Pan, “Adsorption of a cationic dye ( methylene blue ) onto spent activated clay,” vol. 144, no. September 2006, pp. 355–362, 2007.
    [36] N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons — a comparative study,” vol. 51, pp. 25–40, 2001.
    [37] B. K. Nandi et al., “Kinetic and Equilibrium Studies on the Adsorption of Crystal Violet Dye using Kaolin as an Adsorbent,” vol. 6395, 2008.
    [38] B. Makhoukhi, M. Djab, and M. A. Didi, “Journal of Environmental Chemical Engineering Adsorption of Telon dyes onto bis-imidazolium modi fi ed bentonite in aqueous solutions,” Biochem. Pharmacol., vol. 3, no. 2, pp. 1384–1392, 2015.
    [39] K. V. Kumar, V. Ramamurthi, and S. Sivanesan, “Modeling the mechanism involved during the sorption of methylene blue onto fly ash,” vol. 284, pp. 14–21, 2005.
    [40] N. N. Nassar, “Kinetics , Mechanistic , Equilibrium , and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater by γ-Fe2O3 Nanoadsorbents Kinetics , Mechanistic , Equilibrium , and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater,” vol. 6395, no. May,2010.
    [41] T. K. Sen, S. Afroze, and H. M. Ang, “Equilibrium , Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pinecone Biomass of Pinus radiata,” pp. 499–515, 2011.
    [42] R. K. Ghosh and D. D. Reddy, “Tobacco Stem Ash as an Adsorbent for Removal of Methylene Blue from Aqueous Solution : Equilibrium , Kinetics , and Mechanism of Adsorption,” 2013.
    [43] Y. Bulut and H. Ayd, “A kinetics and thermodynamics study of methylene blue adsorption on wheat shells,” vol. 194, pp. 259–267, 2006.
    [44] J. Zhang, Q. Zhou, and L. Ou, “Kinetic , Isotherm , and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan / Alumina Composite,” 2012.
    [45] A. R. Tehrani-bagha, H. Nikkar, N. M. Mahmoodi, M. Markazi, and F. M. Menger, “The sorption of cationic dyes onto kaolin : Kinetic , isotherm and thermodynamic studies,” DES, vol. 266, no. 1–3, pp. 274–280, 2011.
    [46] I. D. Mall, V. C. Srivastava, N. K. Agarwal, and I. M. Mishra, “Removal of congo red from aqueous solution by bagasse fly ash and activated carbon : Kinetic study and equilibrium isotherm analyses,” vol. 61, pp. 492–501, 2005.
    [47] C. Namasivayam and R. T. Yamuna, “Removal of acid violet from wastewater by adsorption on waste red mud,” pp. 269–273, 2001.
    [48] M. Daniel et al., “Journal of the Taiwan Institute of Chemical Engineers Adsorption of Eriochrome Black T ( EBT ) dye using activated carbon prepared from waste rice hulls — Optimization , isotherm and kinetic studies,” J. Taiwan Inst. Chem. Eng., vol. 44, no. 4, pp. 646–653, 2013.
    [49] B. Ramaraju, P. Manoj, K. Reddy, and C. Subrahmanyam, “Low Cost Adsorbents from Agricultural Waste for Removal of Dyes,” vol. 33, no. 1, 2014.
    [50] P. S. Kumar, M. Palaniyappan, M. Priyadharshini, A. M. Vignesh, and A. Thanjiappan, “Adsorption of Basic Dye onto Raw and Surface-modified Agricultural Waste,” vol. 33, no. 1, pp. 87–98, 2014.
    [51] D. C. Marcano et al., “Improved Synthesis of Graphene Oxide,” vol. 4, no. 8. [52] Y. Li et al., “Chemical Engineering Research and Design Comparative study of methylene blue dye adsorption onto activated carbon , graphene oxide, and carbon nanotubes,” Chem. Eng. Res. Des., vol. 91, no. 2, pp. 361–368, 2012.
    [53] R. Aradhana, S. Mohanty, and S. Kumar, “Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide fi lled epoxy nanocomposite adhesives,” Polymer (Guildf)., vol. 141, pp. 109–123, 2018.
    [54] J. Luo, Z. Yan, R. Liu, J. Xu, and X. Wang, “Synthesis and excellent visible light photocatalysis performance of magnetic reduced graphene oxide/ZnO/ZnFe2O4 composites,” RSC Adv., vol. 7, no. 38, pp. 23246–23254, 2017.
    [55] J. Zhang, R. Shu, C. Guo, R. Sun, Y. Chen, and J. Yuan, “Fabrication of nickel ferrite microspheres decorated multi-walled carbon nanotubes hybrid composites with enhanced electromagnetic wave absorption properties,” J. Alloys Compd., vol. 784, pp. 422–430, 2019.
    [56] P. Laokul, V. Amornkitbamrung, S. Seraphin, and S. Maensiri, “Characterization and magnetic properties of nanocrystalline CuFe2O4 , NiFe2O4 , ZnFe2O4 powders prepared by the Aloe vera extract solution,” Curr. Appl. Phys., vol. 11, no. 1, pp. 101–108, 2011.
    [57] F. A. Jumeri, H. N. Lim, S. N. Arif, N. M. Huang, P. S. Teo, and S. O. Fatin, “Microwave synthesis of magnetically separable ZnFe2O4 -reduced graphene oxide for wastewater treatment,” vol. 40, pp. 7057–7065, 2014.
    [58] Q. Feng et al., “Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation,” J. Alloys Compd., vol. 737, pp. 197–206, 2018.
    [59] S. Han, K. Liu, L. Hu, F. Teng, P. Yu, and Y. Zhu, “Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure,” Nat. Publ. Gr., no. January, pp. 1–11, 2017.
    [60] A. Ramadani, Y. Stiadi, N. Jamarun, and S. Arief, “Photocatalytic Performance of ZnO-ZnFe2O4 Magnetic Nanocomposites on Degradation of Congo Red Dye under Solar Light Irradiation,” vol. 8, no. 5, pp. 1634–1643, 2017.
    [61] H. Zhu, R. Jiang, Y. Fu, R. Li, and J. Yao, “Applied Surface Science Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption , photocatalysis and magnetic separation,” Appl. Surf. Sci., vol. 369, pp. 1–10, 2016.
    [62] D. Hu, Y. Xie, L. Liu, P. Zhou, J. Zhao, and J. Xu, “Applied Catalysis B : Environmental Constructing TiO2 nanoparticles patched nanorods heterostructure for efficient photodegradation of multiple organics and H2 production,” "Applied Catal. B, Environ., vol. 188, pp. 207–216, 2016.
    [63] W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. Pan, and T. Liu, “Hybridization of graphene sheets and carbon-coated Fe3O 4 nanoparticles as a synergistic adsorbent of organic dyes,” J. Mater. Chem., vol. 22, no. 48, pp. 25108–25115, 2012.
    [64] K. B. Babitha, J. J. Matilda, A. P. Mohamed, and S. Ananthakumar, “RSC Advances Catalytically engineered reduced graphene oxide/ZnO hybrid nanocomposites for the adsorption , photoactivity and selective oil pick-up from,” pp. 50223–50233, 2015.
    [65] K. State, E. State, and K. State, “Langmuir , Freundlich , Temkin and Dubinin – Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk,” vol. 3, no. 1, pp. 38–45, 2012.
    [66] H. He and C. Gao, “Superparamagnetic, Conductive, and Processable Multifunctional Graphene Nanosheets Coated with High-Density Fe3O4 Nanoparticles,” vol. 2, no. 11, pp. 3201–3210, 2010.
    [67] J. M. Chem et al., “Highly efficient dye adsorption and removal : a functional hybrid of reduced,”pp. 3527–3535, 2012.
    [68] F. Tihay, A. Roger, G. Pourroy, and A. Kiennemann, "Role of the Alloy and Spinel in the Catalytic Behavior of Fe− Co/Cobalt Magnetite Composites under CO and CO2 Hydrogenation," Energy & fuels, vol. 16, no. 5, pp. 1271-1276, 2002.
    [69] https://www.atg.world/view-article/Xray%20Diffraction%20Techniques-27163
    [70] https://sites.google.com/site/frontierlab2011/scannig-electron microscope/principie-of-sem.
    [71] https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy.
    [72] A. Gao, P. J. Rizo, L. Scaccabarozzi, C. J. Lee, V. Banine, and F. Bijkerk, “Photoluminescence-based detection of particle contamination on extreme ultraviolet reticles Photoluminescence-based detection of particle contamination on extreme ultraviolet reticles,” vol. 063109, no. 2015, 2016.
    [73] D. F. Leclerc, “Fourier Transform Infrared Spectroscopy in the Pulp and Paper Industry,” no. January 2000, 2014.
    [74] https://en.wikipedia.org/wiki/Zeta_potential.
    [75] https://qd europe.com/at/en/products/magnetism/magnetometers/.

    無法下載圖示 校內:2020-08-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE