簡易檢索 / 詳目顯示

研究生: 陳沁元
Chen, Chin-Yuan
論文名稱: 應用示例效應於大型語言模型學習回饋:對回饋接受度、人工智慧素養與學習成效之影響
Applying Worked Example Effect to Large Language Model Learning Feedback: Impacts on Feedback Receptivity, AI Literacy, and Learning Outcomes
指導教授: 王維聰
Wang, Wei-Tsong
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 104
中文關鍵詞: 示例效應學習回饋大型語言模型人工智慧素養學習成效
外文關鍵詞: Worked Example Effect, Learning Feedback, Large Language Model, Artificial Intelligence Literacy, Learning Outcomes
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人工智慧技術(如大型語言模型)發展,教育領域迎來新教學模式,但較少研究將認知負荷理論結合人工智慧學習工具設計。本研究探討將認知負荷理論中的「示例效應」應用於大型語言模型學習回饋工具,對學習者回饋接受度、人工智慧素養及學習成效的影響。研究針對傳統回饋在個性化與效率上不足,以及人工智慧工具使用中學習者接受度與認知負荷管理挑戰,提出結合示例效應的回饋設計方案。
    本研究採取對照實驗設計,招募未修習資料結構排序演算法課程之大專生作為實驗對象。實驗組於回饋中納入完整示例步驟,對照組僅提供錯誤更正;透過線上系統進行學習活動,並以問卷測量外部認知負荷、增生認知負荷、回饋接受度、人工智慧素養、認知學習成效與實際學習成效,共回收122份有效問卷,以獨立樣本T檢定及偏最小平方結構方程模型分析。
    研究結果證實在大型語言模型學習回饋工具的設計中,應用示例效應能有效改善學習者對工作記憶的調控,也有助於培養人工智慧素養、使他們更能接受學習回饋,並顯著促進實際與認知的學習成果。此外,研究也驗證了外部認知負荷會對增生認知負荷、回饋接受度,以及學習成效產生負面影響,增生認知負荷則會對回饋接受度、人工智慧素養和認知學習成效產生正面影響。其中人工智慧素養能提升回饋接受度,而回饋接受度會顯著影響認知學習成效。
    本研究不僅填補了大型語言模型學習回饋工具中示例效應應用的學術空白,亦結合認知負荷理論提出實證證據,為人工智慧學習回饋工具之設計與實踐提供具體建議:透過示例效應可有效控管認知負荷、提升回饋接受度與人工智慧素養,進而促進學習成效的全面提升。

    In recent years, AI technologies like large language models have transformed education. Yet few studies integrate Cognitive Load Theory into AI-based feedback tools. Addressing personalization and efficiency shortcomings of traditional feedback methods and challenges in AI-tool acceptance and cognitive-load management, this study examines how embedding the “worked example effect” in an LLM feedback tool affects learners’ feedback receptivity, AI literacy, and learning outcomes.
    We conducted a controlled experiment with college students who had not taken a data structures course. Participants engaged in a series of programming exercises online, receiving feedback immediately after each attempt. The experimental group received fully worked solution steps, while the control group received only error-correction feedback. A total of 122 valid responses were analyzed. We measured extraneous and germane cognitive load, feedback receptivity, AI literacy, cognitive learning outcomes, and actual performance. Analyses included independent-samples t-tests and PLS-SEM.
    The results confirm that applying the worked example effect in designing feedback tools powered by large language models supports learners in managing working memory, fosters AI literacy, increases receptivity to feedback, and significantly enhances both cognitive and actual learning outcomes. This study also shows that extraneous cognitive load negatively impacts germane load, feedback receptivity, and learning performance, while germane load positively influences receptivity, AI literacy, and cognitive learning. Notably, enhanced AI literacy promotes greater feedback receptivity, which in turn significantly predicts cognitive learning gains.
    This study not only fills a research gap in applying the worked example effect within LLM-based feedback tools but also provides empirical evidence grounded in Cognitive Load Theory. We offer practical design recommendations: integrating worked examples can help regulate cognitive load, enhance AI literacy and feedback receptivity, and ultimately drive holistic improvements in learning outcomes.

    摘要 I 目錄 VI 圖目錄 X 表目錄 IX 第1章 緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 3 1.3. 研究範圍與限制 3 1.4. 研究流程 4 第2章 文獻探討 6 2.1. 認知負荷 6 2.1.1. 認知負荷的類型 7 2.1.2. 示例效應 9 2.2. 學習回饋 12 2.3. 大型語言模型 17 2.4. 人工智慧素養 20 2.5. 學習成效 24 2.6. 小結 27 第3章 研究方法 29 3.1. 研究架構 29 3.2. 研究假說 31 3.2.1. 外部認知負荷與增生認知負荷 31 3.2.2. 認知負荷與回饋接受度 31 3.2.3. 認知負荷與人工智慧素養 32 3.2.4. 人工智慧素養與回饋接受度 33 3.2.5. 回饋接受度與學習成效 34 3.2.6. 認知負荷與學習成效 34 3.3. 問卷設計 35 3.3.1. 認知負荷量表 36 3.3.2. 回饋接受度量表 36 3.3.3. 人工智慧素養量表 37 3.3.4. 認知學習成效量表 38 3.4. 實驗設計 39 3.4.1. 實驗對象 39 3.4.2. 學習材料與知識測驗 40 3.4.3. 實驗流程 40 3.5. 資料分析方法 42 3.5.1. 實驗假說分析 42 3.5.2. 結構方程模型分析 42 3.6. 前測 45 第4章 資料分析與結果 48 4.1. 資料收集與樣本概況 48 4.1.1. 問卷回收狀況 48 4.1.2. 敘述性統計 48 4.1.3. 常態性檢定 50 4.2. 操弄檢驗 52 4.2.1. 同質性檢定 52 4.2.2. 實驗操弄檢定 53 4.3. 測量模型 53 4.3.1. 信度 53 4.3.2. 收斂效度 55 4.3.3. 區別效度 56 4.3.4. 共線性檢定 58 4.4. 結構模型 58 4.5. 構面假說檢定 61 4.6. 結果分析與討論 62 4.6.1. 認知負荷 62 4.6.2. 回饋接受度 62 4.6.3. 人工智慧素養 63 4.6.4. 學習成效 63 第5章 結論 65 5.1. 學術貢獻 65 5.2. 實務貢獻 67 5.3. 研究限制與未來研究方向 68 參考文獻 70 附錄A 學習材料 77 附錄B 知識測驗 87 1. 先驗知識測驗 87 2. 知識後測 87 附錄C 正式問卷 90

    Abdul-Rahman, S.-S., & Du Boulay, B. (2014). Learning programming via worked-examples: Relation of learning styles to cognitive load. Computers in Human Behavior, 30, 286–298. https://doi.org/10.1016/j.chb.2013.09.007
    Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154. https://doi.org/10.1016/j.compedu.2021.104154
    Altinpulluk, H., Kilinc, H., Firat, M., & Yumurtaci, O. (2020). The influence of segmented and complete educational videos on the cognitive load, satisfaction, engagement, and academic achievement levels of learners. Journal of Computers in Education, 7(2), 155–182. https://doi.org/10.1007/s40692-019-00151-7
    Bates, R. (2004). A critical analysis of evaluation practice: The Kirkpatrick model and the principle of beneficence. Evaluation and Program Planning, 27(3), 341–347. https://doi.org/10.1016/j.evalprogplan.2004.04.011
    Beege, M., Schneider, S., Nebel, S., Zimm, J., Windisch, S., & Rey, G. D. (2021). Learning programming from erroneous worked-examples. Which type of error is beneficial for learning? Learning and Instruction, 75, 101497. https://doi.org/10.1016/j.learninstruc.2021.101497
    Bernabei, M., Colabianchi, S., Falegnami, A., & Costantino, F. (2023). Students’ use of large language models in engineering education: A case study on technology acceptance, perceptions, efficacy, and detection chances. Computers and Education: Artificial Intelligence, 5, 100172. https://doi.org/10.1016/j.caeai.2023.100172
    Biggs, J. (1999). What the Student Does: Teaching for enhanced learning. Higher Education Research & Development, 18(1), 57–75. https://doi.org/10.1080/0729436990180105
    Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21(1), 5–31. https://doi.org/10.1007/s11092-008-9068-5
    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners (No. arXiv:2005.14165). arXiv. https://doi.org/10.48550/arXiv.2005.14165
    Bueno-Vesga, J. A., Xu, X., & He, H. (2021). The Effects of Cognitive Load on Engagement in a Virtual Reality Learning Environment. 2021 IEEE Virtual Reality and 3D User Interfaces (VR), 645–652. https://doi.org/10.1109/VR50410.2021.00090
    Bujang, M. A., Omar, E. D., Foo, D. H. P., & Hon, Y. K. (2024). Sample size determination for conducting a pilot study to assess reliability of a questionnaire. Restorative Dentistry & Endodontics, 49(1), e3. https://doi.org/10.5395/rde.2024.49.e3
    Chang, C.-C., Liang, C., Chou, P.-N., & Lin, G.-Y. (2017). Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Computers in Human Behavior, 71, 218–227. https://doi.org/10.1016/j.chb.2017.01.031
    Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35(2), 63. https://doi.org/10.1007/s10648-023-09782-w
    Cheon, J., & Grant, M. M. (2012). The effects of metaphorical interface on germane cognitive load in Web-based instruction. Educational Technology Research and Development, 60(3), 399–420. https://doi.org/10.1007/s11423-012-9236-7
    Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322–333. https://doi.org/10.1016/j.compedu.2013.05.020
    Costley, J., Fanguy, M., Lange, C., & Baldwin, M. (2021). The effects of video lecture viewing strategies on cognitive load. Journal of Computing in Higher Education, 33(1), 19–38. https://doi.org/10.1007/s12528-020-09254-y
    Dawson, P., Henderson, M., Mahoney, P., Phillips, M., Ryan, T., Boud, D., & Molloy, E. (2019). What makes for effective feedback: Staff and student perspectives. Assessment & Evaluation in Higher Education, 44(1), 25–36. https://doi.org/10.1080/02602938.2018.1467877
    Debue, N., & van de Leemput, C. (2014). What does germane load mean? An empirical contribution to the cognitive load theory. Frontiers in Psychology, 5, 1099. https://doi.org/10.3389/fpsyg.2014.01099
    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (No. arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805
    Diefenbach, M. A., Weinstein, N. D., & O’Reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 181–192. https://doi.org/10.1093/her/8.2.181
    Dijks, M. A., Brummer, L., & Kostons, D. (2018). The anonymous reviewer: The relationship between perceived expertise and the perceptions of peer feedback in higher education. Assessment & Evaluation in Higher Education, 43(8), 1258–1271. https://doi.org/10.1080/02602938.2018.1447645
    Dong, A., Jong, M. S.-Y., & King, R. B. (2020). How Does Prior Knowledge Influence Learning Engagement? The Mediating Roles of Cognitive Load and Help-Seeking. Frontiers in Psychology, 11, 591203. https://doi.org/10.3389/fpsyg.2020.591203
    Ellis, R. (2001). Introduction: Investigating Form-Focused Instruction. Language Learning, 51(s1), 1–46. https://doi.org/10.1111/j.1467-1770.2001.tb00013.x
    Ferguson, P. (2011). Student perceptions of quality feedback in teacher education. Assessment & Evaluation in Higher Education, 36(1), 51–62. https://doi.org/10.1080/02602930903197883
    Garces, S., Vieira, C., Ravai, G., & Magana, A. J. (2023). Engaging students in active exploration of programming worked examples. Education and Information Technologies, 28(3), 2869–2886. https://doi.org/10.1007/s10639-022-11247-6
    Gupta, U., & Zheng, R. Z. (2020). Cognitive Load in Solving Mathematics Problems: Validating the Role of Motivation and the Interaction Among Prior Knowledge, Worked Examples, and Task Difficulty. European Journal of STEM Education, 5(1), 05. https://doi.org/10.20897/ejsteme/9252
    Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). Sage.
    Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
    Henderson, M., Ryan, T., & Phillips, M. (2019). The challenges of feedback in higher education. Assessment & Evaluation in Higher Education, 44(8), 1237–1252. https://doi.org/10.1080/02602938.2019.1599815
    Hossain, Z., Biswas, M. S., Khan, N. A., & Khan, G. (2025). Artificial intelligence literacy among South Asian library and information science students: Socio-demographic influences and educational implications. IFLA Journal, 03400352251331468. https://doi.org/10.1177/03400352251331468
    Hossain, Z., Biswas, Md. S., & Khan, G. (2025). AI literacy of library and information science students: A study of Bangladesh, India and Pakistan. Journal of Librarianship and Information Science, 09610006241309323. https://doi.org/10.1177/09610006241309323
    Huang, C.-F., Nien, W.-P., & Yeh, Y.-S. (2015). Learning effectiveness of applying automated music composition software in the high grades of elementary school. Computers & Education, 83, 74–89. https://doi.org/10.1016/j.compedu.2015.01.003
    Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
    Kirkpatrick, D., & Kirkpatrick, J. (2006). Evaluating training programs: The four levels (3 ed.). Berrett-Koehler Publishers.
    Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1), 45–77. https://doi.org/10.1007/s11251-020-09502-9
    Kumar, P. (2024). Large language models (LLMs): Survey, technical frameworks, and future challenges. Artificial Intelligence Review, 57(10), 260. https://doi.org/10.1007/s10462-024-10888-y
    Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/journal.pdig.0000198
    Lange, C. (2023). The relationship between e-learning personalisation and cognitive load. Open Learning, 38(3), 228–242. https://doi.org/10.1080/02680513.2021.2019577
    Lange, C., Costley, J., & Han, S.-L. (2017). The Effects of Extraneous Load on the Relationship Between Self-Regulated Effort and Germane Load Within an E-Learning Environment. The International Review of Research in Open and Distributed Learning, 18(5). https://doi.org/10.19173/irrodl.v18i5.3028
    Leppink, J., & Heuvel, A. van den. (2015). The evolution of cognitive load theory and its application to medical education. Perspectives on Medical Education, 4(3). https://doi.org/10.1007/S40037-015-0192-X
    Lipnevich, A. A., Gjicali, K., Asil, M., & Smith, J. K. (2021). Development of a measure of receptivity to instructional feedback and examination of its links to personality. Personality and Individual Differences, 169, 110086. https://doi.org/10.1016/j.paid.2020.110086
    Lipnevich, A. A., & Lopera-Oquendo, C. (2024). Receptivity to instructional feedback: A validation study in the secondary school context in Singapore. European Journal of Psychological Assessment, 40(1), 22–32. https://doi.org/10.1027/1015-5759/a000733
    Lizzio, A., & Wilson, K. (2008). Feedback on assessment: Students’ perceptions of quality and effectiveness. Assessment & Evaluation in Higher Education, 33(3), 263–275. https://doi.org/10.1080/02602930701292548
    Luca Bahr, J., Höft, L., Meyer, J., & Jansen, T. (2024). Receptivity to Instructional Computer-Based Feedback (RIF). European Journal of Psychological Assessment. Advance online publication. https://doi.org/10.1027/1015-5759/a000841
    Lui, A. K.-F., Poon, M. H. M., & Hong Wong, R. M. (2019). Automated generators of examples and problems for studying computer algorithms: A study on students’ decisions. Interactive Technology and Smart Education, 16(3), 204–218. https://doi.org/10.1108/ITSE-10-2018-0091
    Ma, S., & Chen, Z. (2024). The Development and Validation of the Artificial Intelligence Literacy Scale for Chinese College Students (AILS-CCS). IEEE Access, 12, 146419–146429. https://doi.org/10.1109/ACCESS.2024.3468378
    Mandouit, L., & Hattie, J. (2023). Revisiting “The Power of Feedback” from the perspective of the learner. Learning and Instruction, 84, 101718. https://doi.org/10.1016/j.learninstruc.2022.101718
    Margulieux, L. E., Morrison, B. B., & Decker, A. (2020). Reducing withdrawal and failure rates in introductory programming with subgoal labeled worked examples. International Journal of STEM Education, 7(1), 19. https://doi.org/10.1186/s40594-020-00222-7
    Merriam, S. B., & Baumgartner, L. M. (2020). Learning in adulthood: A comprehensive guide (4 ed.). John Wiley & Sons.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
    Mosquera, J. M. L., Suarez, C. G. H., & Guerrero, V. A. B. (2023). Effect of flipped classroom and automatic source code evaluation in a CS1 programming course according to the Kirkpatrick evaluation model. Education and Information Technologies, 28(10), 13235–13252. https://doi.org/10.1007/s10639-023-11678-9
    Muldner, K., Jennings, J., & Chiarelli, V. (2022). A Review of Worked Examples in Programming Activities. ACM Transactions on Computing Education, 23(1). https://doi.org/10.1145/3560266
    Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
    Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education, 59(3), 1065–1078. https://doi.org/10.1016/j.compedu.2012.04.016
    Paas, F., & Van Gog, T. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. Learning and Instruction, 16(2), 87–91. https://doi.org/10.1016/j.learninstruc.2006.02.004
    Paas, F., & van Merriënboer, J. J. G. (2020). Cognitive-Load Theory: Methods to Manage Working Memory Load in the Learning of Complex Tasks. Current Directions in Psychological Science, 29(4), 394–398. https://doi.org/10.1177/0963721420922183
    Panadero, E., & Lipnevich, A. A. (2022). A review of feedback models and typologies: Towards an integrative model of feedback elements. Educational Research Review, 35, 100416. https://doi.org/10.1016/j.edurev.2021.100416
    Pinski, M., & Benlian, A. (2024). AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, 2(1), 100062. https://doi.org/10.1016/j.chbah.2024.100062
    Raiaan, M. A. K., Mukta, Md. S. H., Fatema, K., Fahad, N. M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali, M. E., & Azam, S. (2024). A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access, 12, 26839–26874. https://doi.org/10.1109/ACCESS.2024.3365742
    Reio, T. G., Rocco, T. S., Smith, D. H., & Chang, E. (2017). A Critique of Kirkpatrick’s Evaluation Model. New Horizons in Adult Education and Human Resource Development, 29(2), 35–53. https://doi.org/10.1002/nha3.20178
    Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group work settings. Educational Psychology, 30(3), 349–367. https://doi.org/10.1080/01443411003659960
    Ruwe, T., & Mayweg-Paus, E. (2024). Embracing LLM Feedback: The role of feedback providers and provider information for feedback effectiveness. Frontiers in Education, 9, 1461362. https://doi.org/10.3389/feduc.2024.1461362
    Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18(2), 119–144. https://doi.org/10.1007/BF00117714
    Sadler, I., Reimann, N., & Sambell, K. (2023). Feedforward practices: A systematic review of the literature. Assessment & Evaluation in Higher Education, 48(3), 305–320. https://doi.org/10.1080/02602938.2022.2073434
    Saihi, A., Ben-Daya, M., Hariga, M., & As’ad, R. (2024). A Structural equation modeling analysis of generative AI chatbots adoption among students and educators in higher education. Computers and Education: Artificial Intelligence, 7, 100274. https://doi.org/10.1016/j.caeai.2024.100274
    Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence. Technology in Society, 77, 102537. https://doi.org/10.1016/j.techsoc.2024.102537
    Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153–189. https://doi.org/10.3102/0034654307313795
    Sitzmann, T., Ely, K., Brown, K. G., & Bauer, K. N. (2010). Self-Assessment of Knowledge: A Cognitive Learning or Affective Measure? Academy of Management Learning & Education, 9(2), 169–191.
    Smidt, A., Balandin, S., Sigafoos, J., & Reed, V. A. (2009). The Kirkpatrick model: A useful tool for evaluating training outcomes. Journal of Intellectual & Developmental Disability, 34(3), 266–274. https://doi.org/10.1080/13668250903093125
    Sopina, E., & McNeill, R. (2015). Investigating the relationship between quality, format and delivery of feedback for written assignments in higher education. Assessment & Evaluation in Higher Education, 40(5), 666–680. https://doi.org/10.1080/02602938.2014.945072
    Stadler, M., Bannert, M., & Sailer, M. (2024). Cognitive ease at a cost: LLMs reduce mental effort but compromise depth in student scientific inquiry. Computers in Human Behavior, 160, 108386. https://doi.org/10.1016/j.chb.2024.108386
    Stolpe, K., & Hallström, J. (2024). Artificial intelligence literacy for technology education. Computers and Education Open, 6, 100159. https://doi.org/10.1016/j.caeo.2024.100159
    Strijbos, J.-W., Narciss, S., & Dünnebier, K. (2010). Peer feedback content and sender’s competence level in academic writing revision tasks: Are they critical for feedback perceptions and efficiency? Learning and Instruction, 20(4), 291–303. https://doi.org/10.1016/j.learninstruc.2009.08.008
    Strijbos, J.-W., Pat-El, R., & Narciss, S. (2021). Structural validity and invariance of the Feedback Perceptions Questionnaire. Studies in Educational Evaluation, 68, 100980. https://doi.org/10.1016/j.stueduc.2021.100980
    Su, C.-H. (2016). The effects of students’ motivation, cognitive load and learning anxiety in gamification software engineering education: A structural equation modeling study. Multimedia Tools and Applications, 75(16), 10013–10036. https://doi.org/10.1007/s11042-015-2799-7
    Sunawan, S., Sugiyo, S., & Pranoto, Y. K. S. (2021). Achievement goals and extraneous load predict germane load: The mediating effects of achievement emotions. Malaysian Journal of Learning and Instruction, 18(2), Article 2. https://doi.org/10.32890/mjli2021.18.2.8
    Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4
    Sweller, J. (2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educational Psychology Review, 22(2), 123–138. https://doi.org/10.1007/s10648-010-9128-5
    Sweller, J., Ayres, P., & Kalyuga, S. (2011). Intrinsic and Extraneous Cognitive Load. In J. Sweller, P. Ayres, & S. Kalyuga (Eds.), Cognitive Load Theory (pp. 57–69). Springer. https://doi.org/10.1007/978-1-4419-8126-4_5
    Sweller, J., & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem Solving in Learning Algebra. Cognition and Instruction, 2(1), 59–89.
    Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5
    Teng, M. F. (2024). “ChatGPT is the companion, not enemies”: EFL learners’ perceptions and experiences in using ChatGPT for feedback in writing. Computers and Education: Artificial Intelligence, 7, 100270. https://doi.org/10.1016/j.caeai.2024.100270
    Tinmaz, H., Lee, Y.-T., Fanea-Ivanovici, M., & Baber, H. (2022). A systematic review on digital literacy. Smart Learning Environments, 9(1), 21. https://doi.org/10.1186/s40561-022-00204-y
    Tzafilkou, K., Perifanou, M., & Economides, A. A. (2021). Negative emotions, cognitive load, acceptance, and self-perceived learning outcome in emergency remote education during COVID-19. Education and Information Technologies, 26(6), 7497–7521. https://doi.org/10.1007/s10639-021-10604-1
    Urbach, N., & Ahlemann, F. (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares. Journal of Information Technology Theory and Application (JITTA), 11(2), 2.
    Van der Kleij, F. M., & Lipnevich, A. A. (2021). Student perceptions of assessment feedback: A critical scoping review and call for research. Educational Assessment, Evaluation and Accountability, 33(2), 345–373. https://doi.org/10.1007/s11092-020-09331-x
    van Gog, T., Paas, F., & van Merriënboer, J. J. G. (2004). Process-Oriented Worked Examples: Improving Transfer Performance Through Enhanced Understanding. Instructional Science, 32(1), 83–98. https://doi.org/10.1023/B:TRUC.0000021810.70784.b0
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention Is All You Need (No. arXiv:1706.03762). arXiv. https://doi.org/10.48550/arXiv.1706.03762
    Wang, B., Rau, P.-L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337. https://doi.org/10.1080/0144929X.2022.2072768
    Wang, C., Wang, H., Li, Y., Dai, J., Gu, X., & Yu, T. (2024). Factors Influencing University Students’ Behavioral Intention to Use Generative Artificial Intelligence: Integrating the Theory of Planned Behavior and AI Literacy. International Journal of Human–Computer Interaction, 41(11), 1–23. https://doi.org/10.1080/10447318.2024.2383033
    Wang, H., Zhang, X., Jin, Y., & Ding, X. (2024). Examining the relationships between cognitive load, anxiety, and story continuation writing performance: A structural equation modeling approach. Humanities and Social Sciences Communications, 11(1), 1–10. https://doi.org/10.1057/s41599-024-03840-6
    Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (No. arXiv:2201.11903). arXiv. https://doi.org/10.48550/arXiv.2201.11903
    White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT (No. arXiv:2302.11382). arXiv. https://doi.org/10.48550/arXiv.2302.11382
    Woo, J.-C. (2014). Digital Game-Based Learning Supports Student Motivation, Cognitive Success, and Performance Outcomes. EDUCATIONAL TECHNOLOGY & SOCIETY, 17(3), 291–307.
    Wu, C.-H., Liu, C.-H., & Huang, Y.-M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1), 35. https://doi.org/10.1186/s40594-022-00346-y
    Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/j.caeai.2023.100147
    Zarrinabadi, N., & Rezazadeh, M. (2023). Why only feedback? Including feed up and feed forward improves non-linguistic aspects of L2 writing. Language Teaching Research, 27(3), 575–592. https://doi.org/10.1177/1362168820960725
    Zhang H. (2024). Cognitive load as a mediator in self-efficacy and English learning motivation among vocational college students. PLOS ONE, 19(11), e0314088. https://doi.org/10.1371/journal.pone.0314088
    Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., … Wen, J.-R. (2024). A Survey of Large Language Models (No. arXiv:2303.18223). arXiv. https://doi.org/10.48550/arXiv.2303.18223

    無法下載圖示 校內:2030-06-23公開
    校外:2030-06-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE