簡易檢索 / 詳目顯示

研究生: 鄭智元
Cheng, Chih-Yuan
論文名稱: 相對密度對還原碴泡沫材料物理性質之影響
Effects of Relative Density on the Physical Properties of Alkali-Activated Reducing-Slag Foams
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 還原碴廢容器玻璃鹼激發膠結材泡沫材料
外文關鍵詞: Reducing-slag, waste container glass, alkali-activated binder, chemical foaming method, high temperature and pressure curing, foam
相關次數: 點閱:30下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃利用鹼激發原理,將電弧爐鍊鋼廠所生產之還原碴廢棄物製成鹼激發還原碴膠結材,期能取代傳統高耗能高碳牌之波特蘭水泥。主要藉由改變鹼活化劑中矽酸鈉及氫氧化鈉之濃度,探討不同鹼活化劑對所製成鹼激發還原碴膠結材抗壓強度之影響,結果發現提高鹼活化劑中之鹼當量及鹼模數,皆可使所製成膠結材抗壓強度大幅提升,使用水膠比越低者所製成膠結材抗壓強度也有上升趨勢,但由於時常伴隨速凝、劇烈乾縮及白華現象等不利於膠結材之強度發展之影響,同時矽酸鈉材料成本較昂貴,因此,藉由添加廢容器玻璃粉沫,取代部分還原碴粉末作為鹼激發原料。實驗結果發現,僅使用還原碴粉末作為原料,所製成的鹼激發還原碴膠結材試體,經高溫連續養護五天後抗壓強度可達24.765 MPa,但若添加10%廢容器玻璃粉末所製成鹼激發還原碴膠結材試體,於高溫養護一天後抗壓強度可提高至32.04 MPa,至於添加20%廢容器玻璃粉末者,於高溫高壓鍋爐內進行養護後最高抗壓強度為37.54 MPa。
    使用以上三種製作鹼激發還原碴膠結材之最佳配比設計,分別選用機械發泡與化學發泡,嘗試製作鹼激發還原碴泡沫試體,結果發現機械發泡方式並不適合應用於製作鹼激發還原碴泡沫試體,使用化學發泡方式所製成鹼激發還原碴泡沫材料,藉由觀察泡沫試體抗壓強度與其相對密度之試驗成果對數圖,顯示本研究所製作鹼激發還原碴泡沫試體,相當接近完美封閉型泡沫材料,即使於低相對密度情況下,鹼激發還原碴泡沫試體仍具有良好抗壓強度。

    The alkali-activated reducing-slag binders were produced by using the electric arc furnace slag through the alkaline activation reaction, aiming to replace traditional Portland cement with high energy cost and carbon dioxide emission. The effects of the composite alkaline activators containing sodium silicate and sodium hydroxide on the compressive strengths of the resulting alkali-activated reducing-slag binders were investigated. Experimental results indicate that the compressive strengths of the binders are enhanced significantly with increasing alkali-equivalent content and silicate modulus but decreasing water/binder ratio of the alkaline activators we used. But, their compressive strengths are reduced due to the occurrence of rapid setting, severe shrinkage and efflorescence. As lower cost of alkaline activator is sought, waste container glass was introduced to partially replace reducing-slag in the production of the binders. It is found that the compressive strength of the binders without any container glass reaches 24.77 MPa after 5 days high temperature curing. The compressive strength of the binders is increased to 32.04 MPa when 10% container glass is introduced after 1 day high temperature curing. The compressive strength of the binders under a high temperature and pressure curing process is raised up to 37.54 MPa if 20% container glass is added. The optimal mix proportion to make the alkali-activated reducing-slag foams with various densities using chemical foaming method was obtain experimentally. Based on experimental results, it is noted that the relationship between compressive strength and density for the alkali-activated reducing-slag foams is close to that for ideal closed-cell foams.

    摘要ii Extended Abstractiii 目錄xiii 圖目錄xvi 第1章 緒論1 1.1研究動機1 1.2研究目的2 1.3論文組織與內容3 第2章相關理論及文獻回顧5 2.1電弧爐還原碴5 2.1.1電弧爐還原碴的製程5 2.1.2電弧爐還原碴的問題5 2.1.3電弧爐還原碴的應用6 2.2 電弧爐還原碴的材料特性6 2.2.1電弧爐還原碴的物理性質6 2.2.2電弧爐還原碴的化學性質7 2.3鹼激發膠結材9 2.3.1鹼激發膠結材之原理與發展9 2.3.2鹼激發膠結材抗壓強度影響因素9 2.4 鹼激發玻璃膠結材11 2.4.1玻璃的陳化11 2.5 泡沫混凝土11 2.5.1泡沫混凝土的優點11 2.5.2發泡方式12 2.5.3消泡機制13 2.5.4鹼激發泡沫膠結材14 第3章試驗材料與研究方法18 3.1試驗規劃18 3.2試驗材料與儀器設備19 3.2.1試驗材料19 3.2.2試驗儀器20 3.3試驗變數23 3.3.1配比設計變數23 3.4 試體製作25 3.4.1鹼激發還原碴試體製作25 3.4.2玻璃取代試體製作27 3.4.3鹼激發還原碴泡沫試體28 3.5 試驗方法30 3.5.1抗壓強度試驗30 3.5.2吸水率試驗30 3.5.3比重試驗30 第4章試驗結果與討論44 4.1鹼激發還原碴膠結材44 4.1.1鹼當量對抗壓強度影響45 4.1.2水膠比W/B對抗壓強度影響46 4.1.3鹼模數比MS對抗壓強度影響47 4.1.4高溫養護時長對抗壓強度影響48 4.2廢容器玻璃取代還原碴純漿試體49 4.2.1陳化製程對抗壓強度影響50 4.2.2玻璃取代率對抗壓強度影響50 4.2.3高溫養護時長對玻璃取代試體抗壓強度影響51 4.2.4高壓養護對抗壓強度影響52 4.3 鹼激發還原碴純漿泡沫試體52 4.3.1機械發泡52 4.3.2化學發泡53 4.3.3相對密度對抗壓強度影響54 4.3.4泡沫試體微結構55 4.4廢容器玻璃取代還原碴泡沫試體55 4.4.1相對密度對抗壓強度影響56 4.5高壓泡沫試體56 4.5.1相對密度對抗壓強度影響57 4.5.2泡沫試體孔徑分佈57 4.5.3泡沫試體吸水率58 第5章結論與建議80 5.1結論80 5.2建議82 參考文獻83

    [1]柯文弼,「高溫高壓製程之鹼激發還原碴營建材料」, 國立成功大學土木工程研究所,碩士論文,2022。
    [2]台灣鋼鐵工業同業公會,高壓蒸氣安定化電弧爐煉鋼還原碴(石)應用於控制性低強度回填材料(CLSM)使用手冊, 2024。
    [3]全國法規資料庫,經濟部事業廢棄物再利用管理辦法。
    [4]J. Davidovits, "Geopolymers: inorganic polymeric new materials," Journal of Thermal Analysis and calorimetry, vol. 37, no. 8, pp. 1633-1656, 1991。
    [5]陳志賢, 「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2008。
    [6]L. M. b. L. S. b. R. Cioffi a, "Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue", 2003。
    [7]A. P. A Fernández-Jiménez, "Characterisation of fly ashes. Potential reactivity as alkaline cements",2003。
    [8]W. M. K. J. L. Bell, "Preparation of ceramic foams from metakaolin-based geopolymer gels",2009。
    [9]王亦惟, 發泡無機聚合物之開發及耐熱性能研究,國立台北科技大學土木與防災工程研究所,碩士論文, 2009.
    [10]楊昆憲,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2009。
    [11]王宣棫,「TFT-LCD廢玻璃應用於營建板材之可行性」,國立成功大學土木工程研究所,碩士論文,2008。
    [12]CNS1010,水硬性水泥墁料抗壓強度檢測法,1993。
    [13]ASTMC642-13, "Standard Test Method for Density, Absorption, and Voids in Hardended Concrete," 2013.
    [14]CNS11272,水硬性水泥密度試驗法, 1985。
    [15]CNS13480,高壓蒸氣養護輕質氣泡混凝土建材技術手冊。
    [16]洪塗城,「泡沫材料之隔音效能研究」,國立成功大學土木工程研究所,碩士論文, 1997。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE