簡易檢索 / 詳目顯示

研究生: 沈郁家
Shen, Yu-Chia
論文名稱: 探討異染色質在高糖所導致的腫瘤進程及代謝中扮演的角色
The role of heterochromatin in high-dietary-sugar-induced tumor progression and metabolism
指導教授: 顏賢章
Yan, Shian-Jang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 50
中文關鍵詞: 高糖飲食異染色質腫瘤抑制代謝
外文關鍵詞: high dietary sugar (HDS), heterochromatin, tumor suppression, metabolism
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究發現高糖飲食 (High-Dietary Sugar, HDS) 會導致代謝失調,進而誘發
    高血糖及糖尿病,而目前許多證據顯示糖尿病病患是特定癌症的高危險群。在
    表觀遺傳學中,異染色質蛋白1 (Heterochromatin Protein 1, HP1) 主要除了調
    控異染色質的形成,也參與抑制基因的表達。目前,在許多人類的癌症中發現
    異染色質蛋白1 有表現量降低的現象。然而,高糖飲食所誘導的腫瘤進程是否
    受到表關遺傳相關分子機制的調控目前並不清楚。所以本研究利用果蠅作為癌
    症生物模式系統,探討異染色質是否及如何調控糖代謝和高糖飲食所誘導的腫
    瘤進程。餵食帶有Ras/Src 誘導的腫瘤模式生物不同濃度的蔗糖,我們發現腫
    瘤進程會隨著糖濃度的增加而加劇。並且,高糖飲食亦會導致異染色質的降低
    及更惡化的腫瘤進程。另外,我們也發現異染色質的表現量對於抑制腫瘤生長、
    影響癌症動物的發育與存活扮演重要的角色。在Ras/Src 誘導的腫瘤中過度表
    達和降低異染色質蛋白1 表現可抑制腫瘤的生長,同時也改善動物的蛹化和羽
    化率。在腫瘤動物中,全身性提高異染色質蛋白1 的表達可提升動物的蛹化和
    羽化率;然而,全身性減少異染色質蛋白1 的表達則無法達到提升蛹化羽化率
    的效果。有趣的是,在腫瘤進程中,我們觀察到成功羽化的母果蠅比例遠高於
    公果蠅。此外,利用比對基因資料庫及測量mRNA 的表現量,我們找到數個受
    到異染色質蛋白1 調控的代謝相關基因,顯示異染色質對於糖類代謝也很重要。
    總結上述實驗,我們推測異染色質表現量的高低可能藉由調控代謝相關基因的
    表達,進而抑制高糖導致的腫瘤生長。綜上所述,本研究有助於我們自表關遺
    傳的角度,更進一步了解高糖誘導腫瘤進程的分子機制,並且為飲食所導致的
    代謝疾病和相關癌症提供新的治療方向。

    Increasing risks of specific cancers are found in patients with high dietary sugar
    (HDS)-induced metabolic disorders, including hyperglycemia and diabetes mellitus.
    Heterochromatin protein 1 (HP1) which forms heterochromatin and mediates
    epigenetic gene silencing, is down-regulated in various human cancers. However,
    underlying epigenetic mechanisms by which HDS leads to tumor progression are still
    poorly understood. Here, we use Drosophila as a model to investigate whether and
    how heterochromatin epigenetically regulates glucose metabolism and HDS-induced
    tumor progression. By feeding Drosophila, which carry Ras/Src-transformed tumors,
    with four different concentrations of sucrose from zero to 1.0M (HDS), we
    demonstrated that sucrose promotes tumor progression dose-dependently. HDS also
    contributes to heterochromatin reduction and severe tumor progression. Moreover,
    we found that heterochromatin levels are important for tumor suppression as well as
    the development and survival of tumor animals. Animals with overexpression and
    knockdown of HP1 specifically in Ras/src-driven tumors show decreased tumor
    growth and improved pupariation and eclosion. Increasing HP1 levels in the whole
    tumor animal also promotes pupariation and eclosion rates, whereas reducing HP1
    levels by half suppresses pupariation and eclosion rates. Interestingly, progression of
    Ras/Src-transformed tumors exhibit a sex-specific “male-induced-demise” manner.
    In addition, we found that heterochromatin levels are critical for glucose metabolism.
    Finally, using expression profiling data and qRT-PCR, we identified several
    metabolism-related genes that are regulated by HP1. Taken together, our study
    suggests that heterochromatin levels play an important role in suppressing HDSinduced
    tumor growth through the regulation of metabolism-related genes. A better
    understanding of the molecular epigenetic mechanisms responsible for HDS-induced
    tumor progression may provide new treatments for diet-induced metabolic diseases
    and associated cancers.

    Chinese abstract (中文摘要)........................................................................................... I Abstract......................................................................................................................... II Acknowledgement (誌謝)…………………………………………………...........................….……… IV Contents............................................................................................................................V Figure index………………………………………………………………….....................................……….VII 1. Introduction……………………………………………………………….....................................……….1 1-1 Cancer and epigenetics………………………………………………….….............................…..1 1-2 Heterochromatin structure and function.............………………….........................…..2 1-3 The role of heterochromatin in cancer………………………………..................…..…..…..3 1-4 Cancer and diabetes………………………………………………………............................…..…..3 1-5 Cancer and metabolism……………………………………………………............................…….4 1-6 The Drosophila cancer model in this study……………………………..................……..5 2. Materials and Methods.......................................................................................6 2-1 Fly stocks…………………………………………………………............................................………6 2-2 Culture……………………………………………………………………......................................……..6 2-3 Immunofluorescence staining…………………………………………….........................……..7 2-4 Western blotting………………………………………………………......…..............................……7 2-5 Quantitative RT-PCR…………………......................………………...................….....……..8 2-6 Gene switch inducible system……………………………………...............................……..8 2-7 Starvation assay………………………………………………………...................................………9 3. Results…………………………………………………………………….....…...................................…….10 3-1 High dietary sugar (HDS) exacerbates tumor growth……………………...............10 3-2 Heterochromatin levels decrease in HDS-fed animals and tumor cells…......11 3-3 Heterochromatin levels have important influence on tumor animals...........11 3-4 High and low heterochromatin levels in ras1G12V; csk-/- tumor cells result in tumor suppression in HDS-fed animals...................................................................13 3-5 HP1 potential target genes may involve in metabolism and HDS-induced tumor progression…………………………………………………………………………………………..........14 4. Discussion…………………………………………………………………………………………......................16 4-1 Summary of this study………………………………........................................................16 4-2 High and low heterochromatin levels may lead to growth disadvantage of tumor cells…………………………………………………………………………………………......................16 4-3 The epigenetic link between diabetes and cancer progression.....................17 4-4 HP1 may regulate tumor progression in a gender-specific manner..............18 4-5 Glucose metabolism (glycolysis and gluconeogenesis) in cancer................19 4-6 The advantages and limitations of the Drosophila cancer model.................20 4-7 The significance of this study.......................................................................21 5. References………………………………………………………………………………………………………........22 6. Figures………………………………………………………………………………………………………………......28

    Alberti, K.G., and Zimmet, P.Z. (1998). Definition, diagnosis and classification of
    diabetes mellitus and its complications. Part 1: diagnosis and classification of
    diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a
    journal of the British Diabetic Association 15, 539-553.
    Bongaerts, G.P., van Halteren, H.K., Verhagen, C.A., and Wagener, D.J. (2006).
    Cancer cachexia demonstrates the energetic impact of gluconeogenesis in human
    metabolism. Medical hypotheses 67, 1213-1222.
    Bos, J.L., Fearon, E.R., Hamilton, S.R., Verlaan-de Vries, M., van Boom, J.H., van
    der Eb, A.J., and Vogelstein, B. (1987). Prevalence of ras gene mutations in human
    colorectal cancers. Nature 327, 293-297.
    Dang, C.V. (2012). Links between metabolism and cancer. Genes & development 26,
    877-890.
    Dawson, M.A., and Kouzarides, T. (2012). Cancer epigenetics: from mechanism to
    therapy. Cell 150, 12-27.
    DeBerardinis, R.J., and Thompson, C.B. (2012). Cellular metabolism and disease:
    what do metabolic outliers teach us? Cell 148, 1132-1144.
    Dialynas, G.K., Vitalini, M.W., and Wallrath, L.L. (2008). Linking Heterochromatin
    Protein 1 (HP1) to cancer progression. Mutation research 647, 13-20.
    Dillon, N. (2004). Heterochromatin structure and function. Biology of the cell / under
    the auspices of the European Cell Biology Organization 96, 631-637.
    Dorak, M.T., and Karpuzoglu, E. (2012). Gender differences in cancer susceptibility:
    an inadequately addressed issue. Frontiers in genetics 3, 268.
    El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P.L., Roeder, R.G., Cooper,
    M.E., and Brownlee, M. (2008). Transient high glucose causes persistent epigenetic
    changes and altered gene expression during subsequent normoglycemia. The Journal
    of experimental medicine 205, 2409-2417.
    Esteller, M. (2008). Epigenetics in cancer. The New England journal of medicine 358,
    1148-1159.
    Feinberg, A.P. (2007). Phenotypic plasticity and the epigenetics of human disease.
    Nature 447, 433-440.
    Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis?
    Nature reviews Cancer 4, 891-899.
    Gerhäuser, C. (2012). Cancer cell metabolism, epigenetics and the potential influence
    of dietary components – A perspective. Biomedical Research 13.
    Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel,
    L.A., Pollak, M., Regensteiner, J.G., and Yee, D. (2010). Diabetes and cancer: a
    consensus report. Diabetes care 33, 1674-1685.
    Gold, J. (1968). Proposed treatment of cancer by inhibition of gluconeogenesis.
    Oncology 22, 185-207.
    Gonzalez, C. (2013). Drosophila melanogaster: a model and a tool to investigate
    malignancy and identify new therapeutics. Nature reviews Cancer 13, 172-183.
    Hahn, M., Dambacher, S., and Schotta, G. (2010). Heterochromatin dysregulation in
    human diseases. Journal of applied physiology (Bethesda, Md : 1985) 109, 232-242.
    Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    Hirabayashi, S., Baranski, T.J., and Cagan, R.L. (2013). Transformed Drosophila
    cells evade diet-mediated insulin resistance through wingless signaling. Cell 154,
    664-675.
    Ishii, K., Ogiyama, Y., Chikashige, Y., Soejima, S., Masuda, F., Kakuma, T., Hiraoka,
    Y., and Takahashi, K. (2008). Heterochromatin integrity affects chromosome
    reorganization after centromere dysfunction. Science 321, 1088-1091.
    Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: how the
    genome integrates intrinsic and environmental signals. Nature genetics 33 Suppl,
    245-254.
    Kala, R., Peek, G.W., Hardy, T.M., and Tollefsbol, T.O. (2013). MicroRNAs: an
    emerging science in cancer epigenetics. J Clin Bioinforma 3, 6.
    Kirschmann, D.A., Lininger, R.A., Gardner, L.M., Seftor, E.A., Odero, V.A.,
    Ainsztein, A.M., Earnshaw, W.C., Wallrath, L.L., and Hendrix, M.J. (2000). Downregulation
    of HP1Hsalpha expression is associated with the metastatic phenotype in
    breast cancer. Cancer research 60, 3359-3363.
    Larson, K., Yan, S.J., Tsurumi, A., Liu, J., Zhou, J., Gaur, K., Guo, D., Eickbush, T.H.,
    and Li, W.X. (2012). Heterochromatin formation promotes longevity and represses
    ribosomal RNA synthesis. PLoS genetics 8, e1002473.
    Li, D., Firozi, P.F., Zhang, W., Shen, J., DiGiovanni, J., Lau, S., Evans, D., Friess, H.,
    Hassan, M., and Abbruzzese, J.L. (2002). DNA adducts, genetic polymorphisms, and
    K-ras mutation in human pancreatic cancer. Mutation research 513, 37-48.
    Liu, L.P., Ni, J.Q., Shi, Y.D., Oakeley, E.J., and Sun, F.L. (2005). Sex-specific role of
    Drosophila melanogaster HP1 in regulating chromatin structure and gene
    transcription. Nature genetics 37, 1361-1366.
    Masur, K., Vetter, C., Hinz, A., Tomas, N., Henrich, H., Niggemann, B., and Zanker,
    K.S. (2011). Diabetogenic glucose and insulin concentrations modulate transcriptome
    and protein levels involved in tumour cell migration, adhesion and proliferation.
    British journal of cancer 104, 345-352.
    Michael B. Cook, K.A.M., Susan S. Devesa, Neal D. Freedman, and William F.
    Anderson (2011). Sex Disparities in Cancer Mortality and Survival. Cancer
    Epidemiology, Biomarkers & Prevention 20, 1629-1637.
    Munoz-Pinedo, C., El Mjiyad, N., and Ricci, J.E. (2012). Cancer metabolism: current
    perspectives and future directions. Cell death & disease 3, e248.
    Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani, S.S.,
    Cagan, R.L., and Baranski, T.J. (2011). A high-sugar diet produces obesity and insulin
    resistance in wild-type Drosophila. Disease models & mechanisms 4, 842-849.
    Novosyadlyy, R., Lann, D.E., Vijayakumar, A., Rowzee, A., Lazzarino, D.A., Fierz,
    Y., Carboni, J.M., Gottardis, M.M., Pennisi, P.A., Molinolo, A.A., et al. (2010).
    Insulin-mediated acceleration of breast cancer development and progression in a
    nonobese model of type 2 diabetes. Cancer research 70, 741-751.
    Park, J., Sarode, V.R., Euhus, D., Kittler, R., and Scherer, P.E. (2012). Neuregulin 1-
    HER axis as a key mediator of hyperglycemic memory effects in breast cancer.
    Proceedings of the National Academy of Sciences of the United States of America
    109, 21058-21063.
    Pelicano, H., Martin, D.S., Xu, R.H., and Huang, P. (2006). Glycolysis inhibition for
    anticancer treatment. Oncogene 25, 4633-4646.
    Pirola, L., Balcerczyk, A., Okabe, J., and El-Osta, A. (2010). Epigenetic phenomena
    linked to diabetic complications. Nature reviews Endocrinology 6, 665-675.
    Reiter, L.T., Potocki, L., Chien, S., Gribskov, M., and Bier, E. (2001). A systematic
    analysis of human disease-associated gene sequences in Drosophila melanogaster.
    Genome research 11, 1114-1125.
    Ryu, T.Y., Park, J., and Scherer, P.E. (2014). Hyperglycemia as a risk factor for cancer
    progression. Diabetes & metabolism journal 38, 330-336.
    Santos, E., Martin-Zanca, D., Reddy, E.P., Pierotti, M.A., Della Porta, G., and
    Barbacid, M. (1984). Malignant activation of a K-ras oncogene in lung carcinoma but
    not in normal tissue of the same patient. Science 223, 661-664.
    Schwaiger, M., Kohler, H., Oakeley, E.J., Stadler, M.B., and Schubeler, D. (2010).
    Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila
    genome. Genome research 20, 771-780.
    Sciacca, L., Vigneri, R., Tumminia, A., Frasca, F., Squatrito, S., Frittitta, L., and
    Vigneri, P. (2013). Clinical and molecular mechanisms favoring cancer initiation and
    progression in diabetic patients. Nutrition, metabolism, and cardiovascular diseases :
    NMCD 23, 808-815.
    Seshasai, S.R., Kaptoge, S., Thompson, A., Di Angelantonio, E., Gao, P., Sarwar, N.,
    Whincup, P.H., Mukamal, K.J., Gillum, R.F., Holme, I., et al. (2011). Diabetes
    mellitus, fasting glucose, and risk of cause-specific death. The New England journal
    of medicine 364, 829-841.
    Trojer, P., and Reinberg, D. (2007). Facultative heterochromatin: is there a distinctive
    molecular signature? Molecular cell 28, 1-13.
    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the
    Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-
    1033.
    Villa-Cuesta, E., Sage, B.T., and Tatar, M. (2010). A role for Drosophila dFoxO and
    dFoxO 5'UTR internal ribosomal entry sites during fasting. PloS one 5, e11521.
    Villeneuve, L.M., Reddy, M.A., Lanting, L.L., Wang, M., Meng, L., and Natarajan,
    R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and
    inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of
    the National Academy of Sciences of the United States of America 105, 9047-9052.
    Wang, G., Ma, A., Chow, C.M., Horsley, D., Brown, N.R., Cowell, I.G., and Singh,
    P.B. (2000). Conservation of heterochromatin protein 1 function. Molecular and
    cellular biology 20, 6970-6983.
    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
    Wolin, K.Y., Carson, K., and Colditz, G.A. (2010). Obesity and cancer. The
    oncologist 15, 556-565.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE