| 研究生: |
吳昱韋 Wu, Yi-Wei |
|---|---|
| 論文名稱: |
固液界面吸附動力特性之工程建模 Engineering Modeling of Solid-liquid Interfacial Kinetic Behaviors |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 固液界面 、吸附 、分子力學 |
| 外文關鍵詞: | Solid-Liquid, Molecular Mechanics, Adsorption, Interface |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於膠體微粒於固液界面的吸附行為可應用在蛋白質於生醫材料表面的吸附以評估生醫材料的血液相容性及生物晶片表面生物分子的固定化等生醫方面應用,可提供為設計生醫材料及生物晶片的相關準則,極具研究價值。因此,有關膠體微粒於固液界面間微觀行為研究愈來愈受到重視。但固液界面間粒子的吸附行為極為複雜,除了受到吸附界面間各種表面力量的影響外,界面系統中懸浮粒子的內在交互作用、溶液電解質濃度等內外因素所造成的影響亦必須考量。但過去對此複雜界面行為的研究甚少,且以實驗為主,藉由多次實驗測量的結果建立等溫吸附曲線來預估膠體微粒於固液界面的吸附量,此方法步驟繁瑣又難精確。鑑此,本研究乃針對影響膠體微粒於固液界面吸附的各項因素作深入的探討,以建構一個以分子力學微觀模型為基礎並整合內外在因素之固液界面吸附理論模型。
本研究首先利用分子力學微觀模擬推估表面覆蓋率等界面吸附參數,並探討影響固液界面吸附之內外在因素,包括固液界面間電雙層靜電作用能、波爾斥能等內在因素及溶液離子強度、pH值等外在因素對界面吸附的影響,由分子間內在交互作用推估吸附自由能,以吸附自由能及熱力學基本定律推估吸附焓、熵及反應平衡常數等熱力參數。最後整合界面吸附影響因素及相關參數建構完整的固液界面吸附理論模型,並將此理論模型電腦化,以系統化快速的方法估算固液界面動態吸附量及飽和吸附量。為印證本文理論之可行性及相較於傳統吸附理論模型具更精確的預估能力,將本文理論模擬結果與傳統吸附理論模擬結果及文獻實驗資料進行比對,並以比對印證後可靠之模型進行生醫材料血液相容性預估及生物晶片雜交效率之改善等應用。
界面吸附參數的取得,若採用本文所提分子動力模擬方法進行推估,可改善現有繁瑣耗時的多次量測取平均值之方式,此外,由本文所建構的固液界面吸附理論估算值與傳統吸附理論估算值及文獻實驗資料值相互比對的結果,發現與傳統理論相較本文所建構理論之精確度約改善了八個百分點,達到工程可接受範圍內(6.44%),證實本文理論可精確預估粒子於固液界面間的吸附行為。而由生醫材料植入人體後血栓現象之預估及生物晶片反應界面生物分子雜交及檢測效率之提高等兩項應用,證實本文所提理論模型具有實用性。
Adsorption process for solid-liquid interface association is commonly used in many industrial and medical procedure, for example: coating of photography negative or magnetic film, adsorption of protein layer for biomaterials, and adhesion of probe molecule for biochip technology. Because the stability of suspensive micro-particles adsorbed onto the surface of object plays a significant role in determining product quality, researches making the adsorption process for solid-liquid interface more efficiently are worthful greatly. Up to now adsorption behaviors in solid-liquid interface are unknown, because of the complex molecule-interaction and the lack of systematic analysis. As a result of the above reasons, This project will finally establish a comprehensive kinetic and thermodynamic model for solid-liquid interface association.
In order to characterize the solid-liquid adsorption process, the comprehensive model will integrate all intermolecular reaction forces and external operating parameters together. First the microscopic molecular dynamics approach will be used to estimate key physical parameters and to characterize the kinetic behaviors of adsorption process for solid-liquid interface in this model. Then we use electric double layer, Hamaker theorem and Lennard-Jones model to compute the electrostatic, Van der waals and Born interaction potential respectively. The Gibbs free energy will then be used to estimate relative thermodynamic parameters for thermodynamic equilibrium. After considerations from macroscopic and microscopic views, finally we use this model to compute the amount of adsorption at solid-liquid interface. The results will then be further verified by experimental data.
The computed results obtained from the study are compared with experimental ones in the literature. It was found that the results obtained by the proposed method and thosse appeared in the literature agree quite well.
1.Adamson, A.W., Physical Chemistry of Surfaces, 5th edition, Wiley, New York, 1990.
2.Alberty, R.A., and Silbey, R.J., Physical Chemistry, Wiley, New York, 1992.
3.Andrade, J.D., Surface and Interfacial Aspects of Biomedical Polymers, Plenum Press, New York, 1985.
4.Arai, T., and Norde, W., “The Behaviors of Some Model Proteins at Solid-Liquid Interfaces : Adsorption from Single Protein Solutions,” Colloids and Surfaces, Vol. 51, pp. 1-15, 1990.
5.Arnold, V., “Thermodynamics of Association to a Molecule Immobilized in an Electric Double Layer,” Chemical Physics Letters, Vol. 323, pp. 160-166, 2000.
6.Arnold, V., and Pettitt, B.M., “Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Mircoarrays,” Journal of the American Chemical Society, Vol. 125, pp. 7798-7799, 2003.
7.Chan, V., and McKenzie, S.E., “Effect of Hydrophobicity and Electrostatics on Adsorption and Surface Diffusion of DNA Oligonucleotides at Liquid-Solid Interfaces,” Journal of Colloid Interface Science, Vol. 203, pp. 197-207, 1998.
8.Chen, J.H., and Ruckenstein, E., “Kinetically caused Saturation in the Deposition of Cells-Effects of Saturation at the Secondary Minimum and of Excluded Area,” Journal of Colloid Interface Science, Vol. 128, pp. 592-601, 1989.
9.Corsel, J.W., Willems, G.M., and Hermens, W.T., “The Role of Intrinsic Binding Rate and Transport Rate in the Adsorption of Prothrombin, Albumin, and Fibrinogen to Phospholipid Bilayers,” Journal of Colloid Interface Science, Vol. 111, pp. 545-557, 1986.
10.Douglas, M.I., Colloidal Systems and Interfaces, Wiley, New York, 1988.
11.Feke, D.L., and Prabhu, N.D., “A Formulation of the Short-Range Repulsion between Spherical Colloidal Particles,” Journla of Physical Chemistry, Vol. 88, pp. 5735-5739, 1984.
12.Haile, J.M., Molecular Dynamics Simulation, Wiley, New York, 1992.
13.Haynes, C.A., and Norde, W., “Globular Proteins at Solid-Liquid Interfaces,” Colloids and Surfaces B: Biointerfaces, Vol. 2, pp. 517-566, 1994.
14.Harfer, R.D., and Allert, J.T., “Adsorption of lysozyme and ovalbumin by clay: effect of clay suspension pH and clay mineral type,” Soil Science, Vol. 115, pp. 130-138, 1973.
15.Hogg, R., “Mutal Coagulation of Colloidal Dispersions,” Transactions of the Faraday Society, Vol. 62, pp. 1638-1651, 1966.
16.Horbett, T.A., “The Kinetics of Baboon Fibrinogen Adsorption to Polymers: in Vitro and in Vivo Studies,” Journal of Biomedical Material Research, Vol.20, pp. 739-748, 1986.
17.Hunter, R.J., Foundations of Colloid Science, Oxford, New York, 1989.
18.Jeon, S.I., and Lee, J.H., ”Protein-Surface Interactions in the Presence of Polyethylene Oxide,” Journal of Colloid Interface Science, Vol. 142, pp. 149-162, 1991.
19.Jia, X., and Williams, R.A., “Particle Deposition at a Charged Solid-Liquid Interface ,” Chemical Engineering Communication, Vol. 91, pp. 127-198, 1990.
20.John, L.B., Proteins at Interfaces, American Chemical Society, Washington, D.C, 1987.
21.Johnson, C.A., and Lenhoff, A.M., “Electrostatic and Van Der Waals Contributions to Protein Adsorption: Modeling of Ordered Arrays,” Langmuir, Vol. 10, pp. 3705-3713, 1994.
22.Johnson, C.A., and Lenhoff, A.M., “Adsorption of Charged Latex Particles on Mica Studied by Atomic Force Microscopy,” Journal of Colloid Interface Science, Vol. 179, pp. 587-599, 1996.
23.MacRitchie, F., “Proteins at Interfaces,” Advances in Protein Chemistry, Vol. 32, pp. 283-327, 1988.
24.Noinville, V., and Sebille, B., “Modeling of Protein Adsorption on Polymer Surfaces. Computation of Adsorption Potential,” Journla of Physical Chemistry, Vol. 99, pp. 1516-1520, 1995.
25.Norde, W., and Lyklema, J., “Protein Adsorption and Bacterial Adhesion to Solid Surfaces: a Colloid-Chemical Approach,” Colloids and Surfaces, Vol. 38, pp. 1-9, 1989.
26.Oberholzer, M.R., and Lenhoff, A.M., “Protein Adsorptin Isotherms through Colloidal Energetics,” Langmuir, Vol. 15, pp. 3905-3914, 1999.
27.Oberholzer, M.R., and Wanger, N.J., “Grand Canonical Brownian Dynamics Simulation of Colloidal Adsorption,” Journal of Chemical Physics, Vol. 107, pp. 9157-9167, 1997.
28.Ohshima, H., and Kondo, T., “Electrostatic Interaction of an Ion-Penetrable Sphere with a Hard Plate: Contribution of Image Interaction ,” Journal of Colloid Interface Science, Vol.157, pp. 504-508, 1993.
29.Oliveira, R., “Understanding Adhesion : A Means for Preventing Fouling,” Experimental Thermal and Fluid Science, Vol. 14, pp. 316-322, 1997.
30.Rajagopalan, R., and Kim, J.S., “Adsorption of Brownian Particles in the Pressure of Potential Barriers : Effect of Different Modes of Double-Layer Interaction,” Journal of Colloid Interface Science, Vol. 83, pp. 428-448, 1981.
31.Ramachandran, V., “Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore,” Journal of Colloid and Interface Science, Vol. 229, p. 311-322, 2000.
32.Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995.
33.Richard, I.M., Principles of Adsorption and Reaction on Solid Surfaces, Wiley, New York, 1996.
34.Roth, C.M., and Lenhoff, A.M., “Electrostatic and Van Der Waals Contribution to Protein Adsorption: Comparison of Theory and Experiment,” Langmuir, Vol. 11, pp. 3500-3509, 1995.
35.Roth, C.M., and Lenhoff, A.M., “Electrostatic and Van Der Waals Contribution to Protein Adsorption: Computation of Equilibrium Constants,” Langmuir, Vol. 9, pp. 962-972, 1993.
36.Ruckenstein, E., and Lesins, V., “Biotechnology Report Protein Separation by Potential Barrier Chromatography,” Biotechnology and Bioengineering, Vol. 28, pp. 432-451, 1986.
37.Ruckenstein, E., and Prieve, D.C., “Adsorption and Desorption of Particles and Their Chromatographic Separation,” AIChE Journal, Vol. 22, pp. 276-283, 1976.
38.Ruckenstein, E., “Dynamics of Cell Deposition on Surface,” Journal of Theoretical Biology, Vol. 51, pp. 429-438, 1975.
39.Russel, W.B., Colloidal Dispersions, Cambridge University Press, Cambridge, 1989.
40.Vainrub, A., and Pettitt, B.M., “Coulomb Blockage of Hybridization in Two-Dimensional DNA Arrays,” Physical Review E, Vol. 66, pp. 041905-1~041905-4, 2002.
41.Verwey, E.J.W., and Overbeek, J.T.G., Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.
42.Watterson, J., and Piunno, A.E., “Practical Physical Aspects of Interfacial Nucleic Acid Oligomer Hybridization for Biosensor Design,” Analytica Chimica Acta, Vol. 469, pp. 115-127, 2002.
43.Young, B.R., and Cooper, S.L., “Protein Adsorption on Polymeric Biomaterials : Adsorption Kinetics,” Journal of Colloid Interface Science, Vol. 125, pp. 246-259, 1988.
44.Yuan, Y., and Oberholzer, M.R., “Size Does Matter : Electrostatically Determined Surface Coverage Trends in Protein and Colloid Adsorption,” Vol. 165, pp. 125-141, 2000.
45.Zeng, J., and Almadidy, A., “Interfacial Hybridization Kinetics of Oligonucleotides Immobilized onto Fused Silica Surfaces,” Sensors and Actuators B, Vol. 90, pp. 68-75, 2003.
46.小島和夫, 化工熱力學入門, 正文書局, 台北市, 1980.
47.趙承琛, 界面科學特論, 復文書局, 臺南巿, 1985.
48.張有義, 膠體及界面化學入門, 高立圖書有限公司, 台北市, 1997.
49.林峰輝, 生醫材料概論, 教育部, 臺北市, 2000.
50.劉昇鑫, “電流變流體微觀結構與剪切特性研究,” 國立成功大學機械工程學系碩士論文, 2000.
51.夏明瑤, “複合超過濾理論與其在蛋白質純化上之應用,” 國立成功大學機械工程學系碩士論文, 2002.