| 研究生: |
莊凱筌 Chaung, Kai-Chuang |
|---|---|
| 論文名稱: |
培養條件對Aurantiochytrium sp. BL10之DHA產量及脂肪酸組成的影響 Effect of culture conditions on docosahexaenoic acid production and fatty acid composition of Aurantiochytrium sp. BL10 |
| 指導教授: |
陳逸民
Chen, Yi-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 微藻BL10 、二十二碳六烯酸 、十六碳飽和酸 、二十二碳五烯酸 |
| 外文關鍵詞: | BL10, DHA, PA, DPA |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
BL10是生產二十二碳六烯酸 (C22:6 n-3, DHA) 的優良微藻。進行試量產時,其可在72小時內達到乾重110 g L-1與近20 % 的DHA含量,然而此時亦有高達30 % 的十六碳飽和酸 (C16:0, PA)及7 % 的二十二碳五烯酸 (C22:5 n-6, DPA)。由於前者會造成藻油在低溫條件下凝固,影響產品賣相,後者則會和DHA在人體內產生拮抗作用,降低產品的功效。為解決上述問題,此研究利用培養基鹽類的濃度及種類、葡萄糖的濃度、供氧量的調整,以及脂肪酸生合成抑制劑的添加等方法嘗試改善。
研究結果顯示,隨著鹽度的降低,DHA產量有逐漸升高的趨勢,並在鹽度為5 ppt,酵母萃出物、葡萄糖分別為9及90 g L-1的條件進行批次培養,可以獲得最理想的DHA產量 (9.8 g L-1)、以及油質 (PA/DHA = 0.63、DPA/DHA = 0.17)。當培養基的鹽度低於5 ppt 及過多的硫酸根離子存在的情況底下,會使得PA的比例會大幅提昇。而在葡萄糖濃度及碳氮比越高的情況下,PA及DPA的比例越高。此外在細胞停止分裂,開始大量累積油脂之際,降低溶氧或添加cerulenin (fatty acid synthase抑制劑) 的作法,可以明顯降低DPA或PA的比例,然又不致於影響DHA的產量。
因此欲改善BL10油脂比例應避免在鹽度小於5 ppt、硫酸根離子過多、碳氮比或葡萄糖濃度過高的條件下培養,並於細胞分裂停止時降低供氣量,此外未來更可利用生物技術的方法抑制fatty acid synthase以改善油脂。
Microalga BL10 is a good candidate for commercial DHA (docosahexaenoic acid, C22:6 n-3) production. During 72 hours industrial fermentation, the biomass can reach 110 g L-1 and contain almost 20% DHA. However, it also exists 30 % PA (palmitic acid, C16:0) and 7 % DPA (docosapentaenoic acid C22:5 n-6). The former (PA) would cause the algae oil to be congealed under low temperature condition, which affects the product appearance; the latter (DPA) would against DHA function in human body. To solve above mentioned problems, in this study we try to modulate the fatty acid profile by changing the culture environment, such as salinity, salt types, glucose concentration, dissolved oxygen level and fatty acid synthesis inhibitor addition.
Result showed that as the salinity decreased, the DHA yield had elevated gradually. The best DHA yield (9.8 g L-1) and the oil quality (PA/DHA = 0.63、DPA/DHA = 0.17) occurred when the salinity was controlled at 5 ppt, yeast extract at 9 and glucose at 90 gL-1 . PA content enhanced when the culture medium salinity was lower than 5ppt plus excess of sodium sulfate addition. It was also showed that the high glucose density and high C/N ratio resulted in the higher PA and DPA content. However, in the case of cell division stopped, decreasing dissolve oxygen level or treating with cerulenin (a fatty acid synthase inhibitor) would obviously reduce the DPA and PA level without affecting of DHA yield.
In order to improve BL10 oil quality, we should avoid culturing under the conditions of salinity less than 5 ppt, excess of sulfate ion concentration, glucose density or C/N ratio. It’s also more practical to lower the DPA content by reducing dissolve oxygen level as the cell division stopped stage. Furthermore, it could be possible to improve oil quality in the future through biotechnological method by inhibiting fatty acid synthase activity.
Apt, K. E., & Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35. p. 215
Baralay, W. R. (1994). Process for growing Thraustochytrium and Schizochytrium using non-chloride salts to produce a micro-floral biomass having omaga-3 highly unsaturated fatty acid. USA. Patent 5,340,742. p. 1
Butt, C. M. (2010). Docosahexaenoic acid (DHA) in development and aging. Journal of Veterinary Behavior: Clinical Applications and Research, 5. p. 155
Connor, W. E. (2000). Importance of n-3 fatty acids in health and disease. American Journal of Clinical Nutrition, 71. p. 171s
Costa, L. G., & Manzo, L. (2006). Contaminants in fish: Risk-benefit considerations. Toxicology Letters, 164. p. S25
De Caterina, R., & Basta, G. (2001). n-3 Fatty acids and the inflammatory response — biological background. European Heart Journal Supplements, 3. p. D42
De Vriese, S. R., Christophe, A. B., & Maes, M. (2003). Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: Further evidence that lowered n-PUFAs are related to major depression. Life Sciences, 73. p. 3181
Ganga, A., Nieto, S., Sanhuez, J., Romo, C., Speisky, H., & Valenzuela, A. (1998). Concentration and stabilization of n-3 polyunsaturated fatty acids from sardine oil. Journal of the American Oil Chemists' Society, 75. p. 733
Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, Part 1: Occurrence, biological activities and applications. Trends Biotechnol, 15. p. 401
Gladyshev, M. I., Arts, M. T., & Sushchik, N. N. (2009). Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems Lipids in Aquatic Ecosystems (pp. 179): Springer New York.
Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91. p. 679
He, K. (2009). Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease-eat fish or take fish oil supplement? Progress in Cardiovascular Diseases, 52. p. 95
Hites, R. A., Foran, J. A., Carpenter, D. O., Hamilton, M. C., Knuth, B. A., & Schwager, S. J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303. p. 226
Holub, B. J. (2009). Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot Essent Fatty Acids, 81. p. 199
Huang, J. Z., Jiang, X. Z., Zhang, X. W., Chen, W. H., Tian, B. Y., Shu, Z. Y., & Hu, S. N. (2008). Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. Journal of Biotechnology, 138. p. 9
Innis, S. M. (2007). Dietary (n-3) fatty acids and brain development. Journal of Nutrition, 137. p. 855
Innis, S. M. (2008). Dietary omega 3 fatty acids and the developing brain. Brain Research, 1237. p. 35
Jakobsen, A. N., Aasen, I. M., Josefsen, K. D., & Strom, A. R. (2008). Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Applied Microbiology and Biotechnology, 80. p. 297
Kuchta, T., & Russell, N. J. (1994). Glycinebetaine Stimulates, but Nacl Inhibits, Fatty-Acid Biosynthesis in the Moderately Halophilic Eubacterium Hx. Archives of Microbiology, 161. p. 234
Kuznetsov, V. E., & Elizarova, I. V. (1992). Parthenogenetic activation of bovine oocytes maturing in vitro. Ontogenez, 23. p. 650
Lehninger, A. L. (1982). Lipid and membrane. Priciples of Biochemistry, First edition. p. 303
Levenson, C. W., & Axelrad, D. M. (2006). Too much of a good thing? Update on fish consumption and mercury exposure. Nutrition Reviews, 64. p. 139
Luying, Z. (2008). Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum. Periodical of Ocean University of China, 7. p. 6
Meireles, L. A., Guedes, A. C., & Malcata, F. X. (2003). Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Journal of Agricultural and Food Chemistry, 51. p. 2237
Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., & da Silva, T. L. (2009). Crypthecodinium cohnii with emphasis on DHA production: a review. Journal of Applied Phycology, 21. p. 199
Menendez, J. A., Vellon, L., Mehmi, I., Oza, B. P., Ropero, S., Colomer, R., & Lupu, R. (2004). Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci U S A, 101. p. 10715
Metz, J. G., Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., & Diltz, S. (2006). Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41. p. 739
Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293. p. 290
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31. p. 426
Mitchell, D. C., Niu, S. L., & Litman, B. J. (2003). Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids, 38. p. 437
Morita, E., Kumon, Y., Nakahara, T., Kagiwada, S., & Noguchi, T. (2006). Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Marine Biotechnology, 8. p. 319
Nakahara, T., Yokochi, T., Higashihara, T., Tanaka, S., Yaguchi, T., & Honda, D. (1996). Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp isolated from Yap islands. Journal of the American Oil Chemists Society, 73. p. 1421
Nichols, D. S. (2003). Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. Fems Microbiology Letters, 219. p. 1
Omura, S. (1976). Antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty-acid synthesis. Bacteriological Reviews, 40. p. 681
Qiu, X. (2003). Biosynthesis of docosahexaenoic acid (DHA, 22 : 6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukotrienes and Essential Fatty Acids, 68. p. 181
Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86. p. 807
Renaud, S., & Parry, D. (1994). Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of Applied Phycology, 6. p. 347
Riediger, N. D., Othman, R. A., Suh, M., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109. p. 668
Shigesada, N., & Okubo, A. (1981). Analysis of the self-shading effect on algal vertical distribution in natural waters. Journal of Mathematical Biology, 12. p. 311
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101. p. 87
Stillwell, W., & Wassall, S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chemistry and Physics of Lipids, 126. p. 1
Suutari, M., & Laakso, S. (1992). Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature. Applied and Environmental Microbiology, 58. p. 2338
Theobald, H. E., Goodall, A. H., Sattar, N., Talbot, D. C., Chowienczyk, P. J., & Sanders, T. A. (2007). Low-dose docosahexaenoic acid lowers diastolic blood pressure in middle-aged men and women. Journal of Nutrition, 137. p. 973
Tzovenis, I., DePauw, N., & Sorgeloos, P. (1997). Effect of different light regimes on the docosahexaenoic acid (DHA) content of Isochrysis-aff-galbana (clone T-ISO). Aquaculture International, 5. p. 489
Unagul, P., Assantachai, C., Phadungruengluij, S., Pongsuteeragul, T., Suphantharika, M., & Verduyn, C. (2006). Biomass and docosahexaenoic acid formation by Schizochytrium mangrovei Sk-02 at low salt concentrations. Botanica Marina, 49. p. 182
Unagul, P., Assantachai, C., Phadungruengluij, S., Suphantharika, M., & Verduyn, C. (2005). Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Botanica Marina, 48. p. 387
Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 131. p. 389
Weerkamp, A., & Heinen, W. (1972). Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. The Journal of Bacteriology, 109. p. 443
Wille, W., Eisenstadt, E., & Willecke, K. (1975). Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrobial agents and chemotherapy, 8. p. 231
Xu, X. Q., & Beardall, J. (1997). Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry, 45. p. 655
Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the American Oil Chemists Society, 74. p. 1431
Yamamura, R., & Shimomura, Y. (1997). Industrial high-performance liquid chromatography purification of docosahexaenoic acid ethyl ester and docosapentaenoic acid ethyl ester from single-cell oil. Journal of the American Oil Chemists' Society, 74. p. 1435
Yang, H. L., Lu, C. K., Chen, S. F., & Chen, Y. M. (2010). Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology, 12. p. 173
Zhu, L. Y., Zhang, X. C., Ji, L., Song, X. J., & Kuang, C. H. (2007). Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochemistry, 42. p. 210
Zuta, C., Simpson, B., Chan, H., & Phillips, L. (2003). Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists' Society, 80. p. 933