| 研究生: |
林保全 Lin, Pao-chuan |
|---|---|
| 論文名稱: |
水位與排水條件對動力夯實成效之實驗研究 Experimental Study on Water Levels and Drain Conditions Effect for Dynamic Compactiom |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 圓錐阻抗 、排水條件 、水位 、成效 、動力夯實 、單點夯擊試驗 |
| 外文關鍵詞: | Cone resistance, Single-point impact test(SIT), Water level, Dynamic compaction, Drain condition, Effectiveness |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文從地下水位的角度,切入動力夯實工法的改良效果討論。動力夯實工法(Dynamic Compaction, DC)之所以成為海埔地或疏鬆地層抗液化之主要的地盤改良工法。其主要原因如下: (1)DC機具簡單, 維修容易, (2)施工快速,工期較短 (3)工程費用低於其他工法。然而在台灣, 由於夯擊能量的限制(錘重、落距、地下水位等), 導致在一般能量在500 t-m之改良深度僅止於地表下10公尺至13公尺。對於潛在液化深度在13公尺以下之土壤, 則功效不彰。主要原因之ㄧ為部分夯擊能量被地下水體吸收且激發了超額孔隙水壓,降低了有效夯擊能量所致。
本研究自行研發室內控制排水條件之單擊試驗系統及自動圓錐貫入系統,探討浚填砂土在三種水位高度(高水位、中水位、低水位)及四種開孔率(0%、7%、15%、100%)之條件下,受夯擊後之下列各項物理參數:(1) 動態土壓力增量,(2) 內部所激發之超額孔隙水壓增量,(3) 孔隙水壓消散時間,(4) 殘餘水壓增量,(5) 夯擊後之土壤貫入阻抗等,並對設計之儀器及試體製作方式進行各項率定及貫入阻抗影響試驗。
結果顯示,乾土試體之改良成效均大於含水位試體,在相同水位高度條件下,高水位試體若開孔率大於7%,其改良成效將不再增加,中水位試體開孔率愈大其改良效果愈佳,低水位試體之各項開孔率其改良成效均接近乾土試體;在相同開孔率之條件下,低水位試體改良成效大於中水位者,又遠高於高水位者。由各項水壓參數分析可知,水位愈高且開孔率愈小之試體受夯擊後,所激發之超額孔隙水壓及殘餘水壓增量愈大,且水壓消散時間愈長,相對的改良成效愈低。本文引入改良率(improvement ratio, RI) 與貫入功 (penetration work, Wq) 之概念,針對以上各種水位與開孔條件進行整體性成效評估, 均顯示乾土試體之整體成效最佳. 可見,砂性地盤在動力夯實改良之前,若可預先降低地下水位,則應可增加效夯擊能量,間接增加了改良深度,同時亦可減少等待超額孔隙水壓消散的時間,而縮短工期,可謂一舉數得。
This paper presents an experiment study on the effectiveness of dynamic compaction on from the viewpoint of groundwater table. The major advantages of dynamic compaction to be the main soil improvement technique against soil liquefaction for reclaimed land or loose ground are addressed as follow, (1) simple machine and maintenance, (2) construction is fast, (3) construction cost is lower than other methods. However, due to the safety concern and mobility limit, the compaction energy is constrained at a level of 500 t-m (e.g. a tamper of 25 ton with a drop height of 20m), and the depth of soil improvement is limited at GL-10m to GL-13m. One of the major causes that a great part of compaction energy is absorbed by the groundwater which induces the excess pore water pressure and the effective compacting stress is reduced correspondingly.
An experimental device, namely Single-point Impact Test (SIT) was developed to perform the dynamic compaction under different three water levels and four drain conditions. Meanwhile, an automatic cone penetrometer also is developed to acquire the cone resistance in soils. During the tests, the following responses are obtained through the data acquisition system, (1) increments of dynamic stresses in soil, (2) the increments of excess pore water pressure in soil samples, (3) dissipation of excess pore water pressure, (4) residual water pressure, (5) cone resistance of soil sample after impacts, etc. Besides, many calibration and confirmation tests were performed for the experiment apparatus and soil samples.
The results indicate that the effectiveness of dry soils is higher than that with lower water level and much higher than that with high water level. Under the same water level, the cone resistance of soil sample with high water level reaches a maximum value as the opening ratio increasing to 7 %. For medium water level, the cone resistance of soil samples is increasing with the increasing of opening ratio. As for the low water levels, the cone resistances of all soil samples are similar to those of dry soil samples. Under the same opening ratio, the effectiveness of soil sample with low water level is higher than that of medium ones, and much higher that of ones with higher water levels. Besides, the induced pore water pressure and residual water pressure of the soil samples with higher water level and less opening ratio are higher than that of lower water level and consequently the dissipation time is longer and also the effectiveness is less. By introducing the terms of improvement ratio (RI) and penetration work (Wq) done for the above cases, the overall performance of improvement can be evaluated. The observations reveal that by lowering down the groundwater table prior to dynamic compaction at field, the soil resistance can be increased in depths and the depth of improvement could be extended accordingly.
1.山田正俊,「動壓密工法」,軟弱地盤改良工法之相關現狀講演會資料,第89~97頁(1982)。
2.史美筠,「強夯法施工參數的確定及施工中震動影響問題」,土建專題情報資料—軟土地基處理與強夯法,中國建築技術發展中心文獻部,第30~33頁(1988)。
3.李奕,「動壓密工法施工中能量問題探討」,碩士論文,國立台灣海洋大學河海工程研究所,基隆,第10~35頁(1994)。
4.李建南,「改良砂土現地試驗參數相關性之研究」,碩士論文,國立臺灣海洋大學河海工程學系,基隆(2001)。
5.余俊達,「含水不均質砂土層承受夯擊及荷載之應力分佈」,碩士論文,國立成功大學木工程研究所,台南(1999)。
6.林鴻文,「動力壓密工法之改良效果及其力學機制」,碩士論文,國立中央大學土木工程研究所,桃園(1996)。
7.林志穎,「含細粒料砂土層受夯擊時之應力分佈」,碩士論文,國立成功大學木工程研究所,台南(1998)。
8.林英堂、陳逸駿、何泰源、余明山、曹源暉,「建築物基礎構造設計規範修訂之研究—地層改良」,內政部建築研究所協同研究報告,第174~208頁,(2004)。
9.范維垣、史美筠、裘以惠,「關於強夯法加固地基的幾個問題」,地基處理學術會議論文選集,第7~15頁(1980)。
10.梁曉光,「濱海抽砂造地工程」,中興工程,第42期,第45~62頁(1994)。
11.張吉佐、方仲欣,「水送填土造地之研討」,地工技術雜誌,第51期,第5-20頁(1995)。
12.陳景文、廖哲民,「動力壓密工法對砂土層進行土壤改良之研究」,第二十屆全國力學會議論文集,台北,第508~514頁(1996)。
13.陳景文、廖哲民,「以動力壓密工法改良海埔新生地工程性質之探討」,第十八屆海洋工程延討會論文集,第748~757頁(1996)。
14.陳景文、廖哲民,「動力壓密工法對砂土層進行土壤改良之研究」,第二十屆全國力學會議論文集,台北,第508~514頁(1996)。
15.陳斗生、俞清翰、葉嘉鎮,「海埔新生地的大地工程問題之探討-以六輕基地為例(上篇)」,地工技術,第98~99頁(1996)。
16.陳景文、李維峰、陳福成、林保全,「隔離降水對動力夯實之效益評估」,海峽兩岸岩土工程/地工技術交流研討會,天津,地281~288頁(2007)。
17.黃建順、鍾毓東,「土壤改良-動力壓密法」,地工技術,地四期,第73~87頁(1983)。
18.馮道偉、陳向巡、倪贊堯,「動力夯擊夯擊參數之案例分析」,第八屆大地工程學術研討論文會,第1473~1482頁(1999)。
19.葛致中,「驗證動力夯實夯錘夯擊效應效益之研究」,碩士論文,私立中原大學土木工程學系,桃園(2002)。
20.鳴海直信,「最近軟弱地盤對策工法設計施工例—動力壓密工法」,月刊建設,第69 ~78頁(1987)。
21.廖哲民,「動態應力作用下砂土層之應力分佈」,博士論文,國立成功大學木工程研究所,台南(1999)。
22.劉鑫全,「片狀沙土經水力填築後之動態變形特性」,碩士論文國立中央大學土木工程研究所,桃園(1995)。
23.潘少昀、黃子明,「動力壓密工法在海埔新生地地盤改良工程之應用」,第六屆大地工程研討會,阿里山,第1071~1082頁(1995)。
24.潘少昀、黃子明,「台塑麥寮重機械廠動力壓密地盤改良」,地工技術雜誌,第51期,第35~50頁(1995)。
25.蔡漢傑,「大尺度模型試驗探討砂土層承受夯擊時之應力分不研究」,碩士論文,國立成功大學木工程研究所,台南(1998)。
26.鍾毓東、葉嘉鎮、吳偉康、余名山,「深層夯實改良應用於新生地之案例」,地工技術,第五十一期,第67 ~78頁(1995)。
27.魏大偉,「砂土承受動力壓密工法之應力分佈研究」,碩士論文,國立成功大學木工程研究所,台南(1997)。
28.Bossinesq, J., “Application des Potentials a L’Etude de L’Equilibre et du Mouvent des Solides Elastiques,”Gauthier-Villars, Paris, (1883)
29.Carrier, W. D., “Report on Session2 Material Properties,”Hydraulic Fill Structures, ed. By D. J. A. Van Zy1 and Steven G.Vick, Geotechnical Special Publication, ASCE, No.21, pp.203~226 (1988)。
30.Derakhshandeh, M., “Dynamic Compaction of Sanitary Landfil with High Water Tables,”Colorado Dept. of Highways(1985).
31.Hansbo, S., “Dynamic Consolidation of Soils by a Falling Weight,” Ground Engineering, Vol. 11, No. 5, pp.27~36 (1978).
32.Imai, G., “Experimental studies on sedimentation mechanism and sediment formation of clay materials,” Soils and Foundations,Vol.21, No.1, pp. 7-20 (1981)
33.Jessberger, H. L. and Beine, R. A., “Heavy Tamping:Theoretical and Practical Concepts,” Proceedings of the 10th ICSMFE, Vol. 3 Stockholm, Tokyo, pp.695~699 (1981).
34.Leonards, G. A., Cutter, W. A., and Holtz, R. D., “Dynamic Compaction of Granular Soils,” Journal of the Geotechnical Enginnering Division, ASCE, Vol. 106, No. GT1, pp.35-44 (1980).
35.Lukas, R. G., “Densification of Loose Deposits by Pounding,” Journal of the Geotechnical Enginnering Division, ASCE, No. GT4, pp.435~446 (1980).
36.Lukas, R. G., "Geotechnical Engineering Circular No.1-Dynamic Compaction," U.S. Department of Transportation, Federal Highway Administration, pp.255~316 (1995).
37.Menard, I. , “The Dynamic Consolidation of Foundation Soil”, Revue Sols Founds, No. 320(1974).
38.Menard, L. and Broise, Y., “Theoretical and Practical Aspects of Dynamic Consolidation,” Geotechnique, Vol. 25 No. 1, pp.3~18 (1975).
39.Mitchell, J. K., “Soil Improvement-State-of-the-Art-Report,” Proceedings of the 10th ICSMFE, Stockhom, Vol. 4, pp.509~521 (1981).
40.Mayne, P. W., Jones, J. S., and Dumas, J. C., "Ground Response to Dynamic Compaction," Journal of Geotechnical Engineering, ASCE, Vol.110, No.6, pp.757~774 (1984).
41.Mayne, P. W. and Jones, J. S., "Impact Stresses during Dynamic Compaction," Geotechnique, Vol. 109, No. 10, pp.1342~1346 (1984).
42.Menard Soltraitement, “Dynamic Consolidation Final Report:Anti - liquefaction Treatment for the Heavy Equipment Plant,” (1994).
43.Woods, R. D., “Screen of Surface Waves in Soils,” Journal of the Soil Mechanics and Foundation Division , ASCE, Vol. 94, No. SM4, pp.951~979 (1968).