| 研究生: |
朱偉中 Ju, Wei-Jhong |
|---|---|
| 論文名稱: |
快速蒸餾與偵測微流體晶片系統 Rapid microfluidic distillation and detection chip systems |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 二氧化碳 、雷射微流體晶片 、蒸餾晶片 、檢測晶片 |
| 外文關鍵詞: | CO2 laser, microfluidic chip, distillation chip, detection chip |
| 相關次數: | 點閱:137 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出的快速微流體分餾與偵測晶片和系統提供了一種創新的,低成本的,並可在食品工業中實現檢測處理的簡單方法。這項研究證明了相對方便和快速的微流體晶片系統可以提高檢測效率。高效率的檢測系統可以提供更多樣化的檢測服務,以提高食品的安全性。
本研究中使用商用CO 2雷射加工系統來燒蝕在壓克力和玻璃基板的微流道。本研究中提出離焦的雷射束改善微流道表面粗糙度。CO2離焦雷射燒蝕技術是一種低成本的方法,可以在壓克力基板和玻璃基板上快速加工微流體裝置。此外,CO2雷射燒蝕具有低成本大量生產一次性的微流體晶片的潛力,可以應用各式的生物,化學和醫療用途。
相比傳統的蒸餾系統,在這項研究中提出的蒸餾晶片具有許多優點,包括少量樣本/試劑量需求、簡單的結構、簡單的操作過程,以及較低的成本。實驗結果表明,所提出的二氧化硫蒸餾晶片上系統實現了高達94%的蒸餾效率。此外,由那些使用商業大型系統獲得二氧化硫濃度的測量誤差不超過8.6%。同樣地,所提出的甲醇蒸餾晶片上系統實現了高達96%的蒸餾效率和其誤差不超過3%。在本研究中提出五個檢測晶片(Mks. I〜V)。Mk. I型晶片包括一個混合器,而Mk. II型晶片有兩個混合器,避免了檢測流程中額外的混合設備。Mk. III和IV型晶可以直接插入分光光度計進行檢測。Mk. V型晶片是一種具有可執行多次混合的微流體晶片,並同時可執行六到十個檢測試驗。快速晶片偵測系統包括:空氣壓力進液系統與包括一空氣壓力注射器模組和一個簡單的LED/光電二極體檢測模組。
The rapid microfluidic distillation/detection chips and systems proposed in this study provide an innovative, low-cost and straightforward means of achieving detection processes in the food industry. Relative convenient and fast microchip system still can improve the detecting efficiency, and it is proved in this study. High efficiency in detecting establishments can offer more number of service to maintain the food safety.
This study has used a commercial CO2 laser machining system to ablate microchannels on PMMA and glass substrates. The defocused laser beam technology can significant improvement in the surface roughness. The results presented in this study have confirmed that CO2 laser ablation represents a low cost and versatile approach for the rapid prototyping of PMMA-based and glass-based microfluidic devices. Furthermore, CO2 laser ablation has the potential for adaptation to the mass production of microfluidic chips; thereby making possible the fabrication of low-cost, disposable microfluidic chips for a wide variety of biological, chemical and medical applications.
Compared to traditional distillation systems, the rapid distillation microfluidic chips proposed in this study have many advantages, including fast distillation process, small sample / reagent volumes, a simple structure, a straightforward/ fast operational procedure, and a low cost. The experimental results have shown that the proposed sulfur dioxide distillation chip system achieves a distillation efficiency of as much as 94%, and the obtained measurements of the sulfur dioxide concentration deviate by no more than 8.6% from those obtained using a commercial large-scale system. Similarly, the proposed methanol distillation chip system achieves a distillation efficiency of as much as 96% and a measurement performance which deviates by no more than 3% from that of a commercial system.
Five detection chips (designated as Mks. I~V) have been proposed in this study. The Mk. I chip comprises a single mixer, while the Mk. II chip has two mixers, thereby avoiding the need for additional mixing devices in the detection process. The Mk. III and IV chips each contain a single mixer and incorporate a collection tank, which also serves as a detection chamber when the chip is inserted into the trough of the spectrophotometer. The Mk. V type chip is essentially a microfluidic mixer with additional storage and collecting functions. The Mk. V type chip can execute six to ten assignments. In the rapid microfluidic detection system has been proposed including an air pressure injector module and a simple LED / photodiode detection module.
Aberl, A. & Coelhan, M. (2013), “Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection,” Food Additives & Contaminants: Part A, 30 (2) pp.226~233.
Adiche, C. & Sundmacher, K. (2010), “Experimental investigation on a membrane distillation based micro-separator,” Chemical Engineering and Processing, 49 (4) pp.425~434.
Allcock, G., Dyer, P. E., Elliner, G. & Snelling, H. V. (1995), “Experimental observations and analysis of CO2 laser-induced microcracking of glass,” Journal of Applied Physics, 78 (12) pp.7295~303.
Araci, I. E. & Brisk, P. (2014), “Recent developments in microfluidic large scale integration, Current Opinion in Biotechnology,” 25 pp.60~68.
Barceloux, D. G., Bond, G. R., Krenzelok, E. P., Cooper, H. & Vale, J. A. (2002), “American academy of clinical toxicology practice guidelines on the treatment of methanol poisoning,” Clinical Toxicology, 40 (4) pp.415~446.
Bartone, N. F., Grieco, R. V. & Herr, Jr. B. S. (1968), “Corrosive gastritis due to ingestion of formaldehyde: without esophageal impairment,” Journal of the American Medical Association, 203 (1) pp.50~51.
Batterman, S. A., Franzblau, A., D'Arcy, J. B., Sargent, N. E., Gross, K. B. & Schreck, R. M. (1998), “Breath, urine, and blood measurements as biological exposure indices of short-term inhalation exposure to methanol,” International Archives of Occupational and Environmental Health,71 (5) pp.325~335.
Berg, A. V. D. & Lammerink, T. S. J. (1998), “Micro total analysis systems: microfluidic aspects, integration concept and applications,” Topics in Current Chemistry, 194 pp.21~49.
Beyor, N., Seo, T. S., Liu, P. & Mathies, R. A. (2008), “Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection,” Biomedical Microdevices, 10 (6) pp.909~917.
Bianchi, F., Careri, M., Musci, M. & Mangia, A. (2007), “Fish and food safety: determination of formaldehyde in 12 fish species by SPME extraction and GC–MS analysis,” Food Chemistry, 100 (3) pp.1049~1053.
Bindler, F., Voges, E. & Laugel, P. (1988), “The problem of methanol concentration admissible in distilled fruit spirits,” Food Additives, 5 (3) pp.343~351.
Boos, R. N. (1948), “Quanitative colorimetric microdetermination of methanol with chromotropic acid reagent, ” Analytical Chemistry, 20 (10) pp. 964~965.
Bowden, M., Geschke, O., Kutter, J. P. & Diamond, D. (2003), “CO2 laser microfabrication of an integrated polymer microfluidic manifold for the determination of phosphorus,” Lab on Chip, 3 (4) pp.221~223,.
Boyd, D. A., Adleman, J. R., Goodwin, D. G. & Psaltis, D. (2008), “Chemical separations by bubble-assisted interphase mass-transfer,” Analytical Chemistry, 80 (7) pp.2452~2456.
Brent, J., McMartin, K., Phillips, S., Aaron, C. & Kulig, K. (2001), “Fomepizole for the treatment of methanol poisoning,” The New England Journal of Medicine, 344 pp.424~429.
Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H. & Burke, D. T. (1998), “An integrated nanoliter DNA analysis device,” Science, 282 pp.484~487.
Campos, C. D. M. & Silva, J. A. F. D. (2013), “Applications of autonomous microfluidic systems in environmental monitoring,” RSC Advance, 3 pp.18216~18227.
Cheng, S. Y., Heilman, S., Wasserman, M., Archer, S., Shuler, M. L. & Wu, M. (2007), “A hydrogel-based microfluidic device for the studies of directed cell migration,” Lab on Chip, 7 (6) pp.763~769.
Chandrasekaran, A. & Packirisamy, M. (2010), “Integrated microfluidic biophotonic chip for laser induced fluorescence detection,” Biomed Microdevices, 12 (5) pp.923~933.
Chen, Y., Li, P., Huang, Xie, P. H., Y., Mai, Wang, J. D., L., Nguyen, N. T. & Huang, T. J. (2014), “Rare cell isolation and analysis in microfluidics,” Lab on Chip, 14 (4) pp.626~645.
Cheng J. Y., Wei C. W., Hsu K. H. & Young T. H. (2004), “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sensors and Actuators B, 99 (1) pp.186~196.
Chung, C. K., Sung, Y. C., Huang, G. R., Hsiao, E. J., Lin, W. H. & Lin, S. L. (2009), “Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing,” Applied Physics A, 94 (4) pp.927~932.
Chung, C. K. & Lin, S. L. (2010), “CO2 laser micromachinedcrackless through holes of Pyrex 7740 glass,” International Journal of Machine Tools & Manufacture, 50 (11) pp.961~968.
Chung, C. K., Liao, M. W. & Lin, S. L. (2010), “Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing,” Applied Physics A, 99 (1) pp.285~290.
Chung, C. K., Chang, H. C., Shih, T. R., Lin, S. L., Hsiao, E. J., Chen, Y. S., Chang, E. C., Chen, C. C. & Lin, C. C. (2010), “Water-assisted CO2 laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application,” Biomedical Microdevices, 12 (1) pp.107~114,.
Cifuentes, A. (2012), “Food analysis: present, future, and foodomics, ” International Scholarly Research Network Analytical Chemistry, 2012 pp.1~16.
Cmelík, J., Machát, J., Niedobová, E., Otruba, V. & Kanický, V. (2005), “Determination of free and total sulfur dioxide in wine samples by vapour-generation inductively coupled plasma–optical-emission spectrometry,” Analytical and Bioanalytical Chemistry, 383 (3) pp.483~488.
Cui, X., Fang, G., Jiang, L. & Wang, S. (2007), “Kinetic spectrophotometric method for rapid determination of trace formaldehyde in foods,” Analytica Chimica Acta, 590 (2) pp.253~259,.
Cypes, S. H. & Engstrom, J. R. (2004), “Analysis of a toluene stripping process: a comparison between a microfabricated stripping column and a conventional packed tower,” Chemical Engineering Journal, 101 (1-3) pp.49~56,.
Czugala, M., Maher, D., Collins, F., Burger, R., Hopfgartner, F., Yang, Y., Zhaou, J., Ducre´e J., Smeaton, A., Fraser, K. J., Lopez, F. B. & Diamond, D. (2013), “CMAS: fully integrated portable centrifugal microfluidic analysis system for on-site colorimetric analysis,” RSC Advance, 3 (36) pp.15928~15938.
d'Alessandro, A., Osterloh, J. D., Chuwers, P., Quinlan, P. J., Kelly, T. J. & Becker, C. E. (1994), “Formate in serum and urine after controlled methanol exposure at the threshold limit value,” Environmental Health Perspectives, 102 (2) pp.178~181.
Dev, S., Iyer, K. S. & Raston, C. L. (2011), “Nanosized drug formulations under microfluidic continuous flow,” Lab on Chip, 11 (19) pp.3214~3217.
Dossi, N., Susmel, S., Toniolo, R., Pizzariello, A. & Bontempelli, G. (2009), “Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring,” Electrophoresis, 30 (19) pp.3465~3471.
Easley, C. J., Karlinsey, J. M., Bienvenue, J. M., Legendre, L. A., Roper, M. G., Feldman, S. H., Hughes, M. A., Hewlett, E. L., Merkel, T. J., Ferrance, J. P. & Landers, J. P. (2006), “A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability,” Proceedings of the National Academy of Sciences, 103 (51) pp.19272~19277.
Eegriwe, E. (1937), “ZumNachweis von methylalkohol,” Microchimica Acta, 2 (4) pp.329~331.
Escarpa, A. (2014), “Lights and shadows on food microfluidics,” Lab on Chip, 14 (17) pp. 3213~3224.
Fan, J., Tang, Y. & Feng, S. (2002), “Determination of formaldehyde traces in fabric and in indoor air by a kinetic fluorimetric method,” International Journal of Environmental Analytical Chemistry, 82 (6) pp.361~367.
Frevert, C. W., Boggy, Keenan, G. T. M. & Folch, A. (2006), “Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve,” Lab on Chip, 6 (7) pp.849~856.
Freeman, B. J. (1980), “Sulphur dioxide in foods and beverages: its use as a preservative and its effect on asthma,” British Journal of Diseases of the Chest, 74 (2) pp.128~134.
Fu, J. L., Fang, Q., Zhang, T., Jin, X. H. & Fang, Z. L. (2006), “Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal Optical arrangement,” Analytical Chemistry, 78 (11) pp.3827~3834.
Fu, L. M., Hong, T. F., Wen, C. Y., Tsai, C. H. & Lin, C. H. (2008), “Electrokinetic in stability effects in microchannels with and without nanofilm coatings, Electrophoresis,” 29 (24) pp.4871~4879.
Fujita, K., Ikuzawa, M., Izumi, T., Hamano, T., Mitsuhashi, Y., Matsuki, Y., Adachi, T., Nonogi, H., Fuke, T., Suzuki, H., Toyoda, M., Ito, Y. & Iwaida, M. (1979), “Establishment of a modified rankine method for the separate determination of free and combined sulphites in foods. III.,” Zeitshrift Lebensmittel Untersuchung und Forschung, 168 (3) pp.206~211.
Gnekow, B. & Ough, C. S. (1976), “Methanol in Wines and Musts: Source and Amounts, ” American Journal Enology and Viticulture, 27 (1) pp. 1~6.
Gong, Z., Zhao, H., Zhang, T., Nie, F., Pathak, P., Cui, K., Wang, Z., Wong, S. & Que, L. (2011), “Drug effects analysis on cells using a high throughput microfluidic chip,” Biomedical Microdevices, 13 (1) pp.215~219.
Grant, W. M. (1947), “Ocular injury due to sulfur dioxide II. experimental study and comparison with ocular effects of freezing,” Archives of Ophthalmology, 38 (6) pp.762~774.
Green, L. F. (1976), “Sulphur dioxide and food preservation—A review”, Food Chemistry, 1 (2) pp.103~124.
Hartman, R. L., Naber, J. R., Buchwald, S. L. & Jensen, K. F. (2010), “Multistep microchemical synthesis enabled by microfluidic distillation,” Angewandte Chemie International Edition, 49 (5) pp.899~903.
Hartman, R. L., Sahoo, H. R., Yen, B. C. & Jensen, K, F. (2009), “Distillation in microchemical systems using capillary forces and segmented flow,” Lab on Chip, 9 (13) pp.1843~1849.
Heller, M. J. (2002), “DNA microarry technology: devices, systems, and applications, ” Annual Review of Biomedical Engineering, 4 pp.129~153.
Hibara, A., Iwayama, S., Matsuoka, S., Ueno, M., Kikutani, Y., Tokeshi, M. & Kitamori, T. (2005), “Surface modification method of microchannels for gas-liquid two-phase flow in microchips,” Analytical Chemistry, 77 (3) pp.943~947.
Hou, C. Y., Lin, Y. S., Wang, Y. T., Jiang, C. M. & Wu, M. C. (2008), “Effect of storage conditions on methanol content of fruit and vegetable juices,” Journal of Food Composition and Analysis, 21 (5) pp. 410~415.
Hwang, H. J., He, K., Gray, S., Zhang, J. & Moona, I. S. (2011), “Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling,” Journal of Membrane Science, 37 (1-2) pp.90~98.
Hyun, K. A. & Jung, H. I. (2014), “Advances and critical concerns with the microfluidic enrichments of circulating tumor cells,” Lab on Chip, 14 (1) pp.45~46.
Issa, A., Brabazon, D. & Hashmi, M. S. J. (2008), “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” Journal of Materials Processing Technology, 207 (1-3) pp. 307~314.
Jensen, M. F., Noerholm, M., Christensen, L. H. & Geschke, O. (2003), “Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam,” Lab on Chip, 3 (4) pp.302~307.
Jensen, K. F. (2001), “Microreaction engineering - is small better?, ” Chemical Engineering Science, 56 (2) pp.293~303.
Jung, W., Yang, J., Barrett, M., Duane, B., Brooks, C., Hurth, C., Nordquist, Smith, A., S. & Zenhausern, F. (2014), “Recent improvement in miniaturization and integration of a DNA analysis system for rapid forensic analysis (MiDAS),” Journal of Forensic Sciences, 2 (1) pp.1~7.
Kantak, C., Chang, C. P., Wong, C. C., Mahyuddin, A., Choolani & M., Rahman, A. (2014), “Lab-on-a-chip technology: impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation,” Lab on Chip, 14 (5) pp.841~854.
Kawasaki, E. S. (2006), “The end of the microarray tower of babel: will universal standards lead the way?,” Journal of Biomolecular Techniques, 17 (3) pp.200~206.
Klank, H., Kutter, J. P. & Geschke, O. (2002), “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on Chip, 2 (4) pp.242~246,.
Klavons, J. A. & Bennett, R. D. (1986), “Determination of methanol using alcohol oxidase and its application to methylester content of pectins,” Journal of Agricultural and Food Chemistry, 34 (4) pp.597~599.
Koultz, P., Davis, G. R., Stillman, C., Barringer, K., Cregg, J. & Till, G. (1989), “Structural comparison of the pichiapastoris alcohol oxidase gene,” Yeast, 5 (3) pp.167~177.
Koziel, J. A., Noah, J. & Pawliszyn, J. (2001), “Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization,” Environmental Science and Technology, 35 (7) pp.1481~1486.
Kruse, J. A. (1992), “Methanol poisoning,” Intensive Care Medicine, 18 (7) pp.391-397.
Lambertus, G. R., Fix, C. S., Reidy, S. M., Miller, R. A., Wheeler, D., Nazarov, E. & Sacks, R. (2005), “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Analyical Chemistry, 77(23), pp.7563~7571.
Lam, K. F., Sorensen, E. & Gavriilidis, A. (2013), “Review on gas–liquid separations in microchannel devices,” Chemical Engineering Research and Design, 91 (10) pp.1941~1953.
Lam, K. F., Cao, E., Sorensen, E. & Gavriilidis, A. (2011), “Development of multistage distillation in a microfluidic chip,” Lab on Chip, 11 (7) pp.1311~1317.
Lawrence, J. & Li, L. (2001), “Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of CO2, Nd:YAG, excimer and high power diode laser radiation,” Materials Science and Engineering: A, 303 (1-2) pp.142~149.
Lee, C. Y., Chen, C. M., Chang, G. L., Lin, C. H. & Fu, L. M. (2006), “Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector–CE microchips,” Electrophoresis, 27 (24) pp.5043~5050.
Li, J., Zhu, J. & Ye, L. (2007), “Determination of formal-dehyde in squid by high performance liquid chromatography,” Asia Pacific Journal of Clinical Nutrition, 16, pp.127~130.
Li, Y. & Zhao, M. (2006), “Simple methods for rapid determination of sulfite in food products,” Food Control, 17 (12) pp.975~980,.
Li. J. F., Li. L. & Stott. F. H. (2004), “Thermal stresses and their implication on cracking during laser melting of ceramic materials,” Acta Materialia, 52 (14) pp.4385~4398.
Lin. C. M., Yang. G. Y. & Mao. I. F. (2004), “Association between maternal exposure to elevatedambient sulfur dioxide during pregnancy and term low birth weight,” Environmental Research, 96 (1) pp.41~50.
Lin, C. H., Tsai, C. H. & Fu, L. M. (2007), “Rapid circular microfluidic mixer utilizing unbalanced driving force, ” Biomedical Microdevices, 9 (1) pp.43~50.
Lipschutz, R. J., Fodor, S. P. A. (1994), “Advanced DNA sequencing technologies,” Current Opinion in Structural Biology, 4 (3) pp.376~380.
Liu, J., Seo, J. H., Li, Y., Chen, D., Kurabayashibc, K. & Fan, X. (2013), “Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement,” Lab on Chip, 13 (5) pp.818~825.
Liu, R. H., Yang, J., Lenigk, R., Bonanno, J. & Grodzinski, P. (2004), “Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection,” Analytical Chemistry, 76 (7) pp.1824~1831.
Liu, P., Li, X., Greenspoon, S. A., Scherer, J. R. & Mathies, R. A. (2011), “Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification,” Lab on Chip, 11 (6) pp.1041~1048.
Liu, Y., Vickers, J. A. & Henry, C. S. (2004), “Simple and sensitive electrode design for microchip electrophoresis / electrochemistry,” Analytical Chemistry, 76 (5) pp.1513~1517.
MacLeod, R. M., Farkas, W., Fridovich, I. & Handler, P. (1961), “Purification and properties of hepatic sulfite oxidase,” The Journal of Biological Chemistry, 236 (6) pp.1841~1846.
Majumdar, J. D. & Manna, I. (2003), “Laser processing of materials,” Sadhana, 28 (3-4), pp.495~562.
Makhotkina, O. & Kilmartin, P. A. (2010), “The use of cyclic voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide”, Analytica Chimica Acta, 668 (2) pp.155~165.
Martinamat, G., Mcmartin, K. E., Hayreh, S. S., Hayreh, M. S. & Tephly, T. R. (1978), “Methanol poisoning: ocular toxicity produced by formate,” Toxicology and Applied Pharmacology, 45 (1) pp.201~208.
Massiot, P., Perron, V., Baron, A. & Drilleau, J. F. (1997), “Release of methanol and depolymerization of highly methyl esterified apple pectin with an endopolygalacturonase from aspergillusniger and pectin methylesterases from A. niger or from orange”, Lebensmittel-Wissenschaft und -Technologie, 30 (7) pp.697~702.
Mclaughlin, J. K. (1994), “Formaldehyde and cancer: a critical review,” International Archives of Occupational and Environmental Health, 66 (5) pp.295~301.
Mcmartin, K. E., Martinamat, G., Makar, A. B. & Tephly, P. R. (1977), “Methanol poisoning. V. Role of formate metabolism in the monkey,” Journal of Pharmacology and Experimental Therapeutics, 201 (3) pp.564~572.
Miller, M. M., Sheehan, P. E., Edelstein, R. L., Tamanaha, C. R., Zhong, L., Bounnak, S., Whitman, L. J. & Colton, R. J. (2001), “A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection,” Journal of Magnetism and Magnetic Materials, 225 (1-2) pp. 138~144.
Mimura, H., Kaneko, M., Nishiyama, N., Fukui, S. & Kanno, S. (1976), “Determination of formaldehyde by the 4-Amino-3-hydrazino-5-mercapto-1, 2, 4-triazol method (AHMT Method),” Eiseikagaku, 22 (8) pp.39~41.
Mukai, F., Hawryluk, I. & Shapiro, R. (1970), “The mutagenic specificity of sodium bisulfit,” Biochemical and Biophysical Research Communications, 39 (5) pp.983~988.
Musagala, P., Ssekaalo, H., Mbabazi, J. & Ntale, M. (2013), “A spectrophotometric method for quantification of sulphite ions in environmental samples,” Journal of Toxicology and Environmental Health Sciences, 5 (4) pp.66~72.
Nakagawa, T., Miyaji, T., Yurimoto, H., Sakai, Y., Kato, N. & Tomizuka, N. (2000), “A methylotrophic pathway participates in pectin utilization by candida boidinii, ” Applied and Environmental Microbiology, 66 (10) pp.4253~4257,.
Nash, T. (1953), “The colorimetric estimation of formaldehyde by means of the hantzsch reaction,” Biochemical Journal, 55 (3) pp.416~421.
Nayak, N. C., Lam, Y. C., Yue, C. Y. & Sinha, A. T. (2008), “CO2-laser micromachining of PMMA: the effect of polymer molecular weight,” Journal of Micromechanics and Microengineering, 18 (9) pp.095020.
Neethirajan, S., Kobayashi, I., Nakajima, M., Wu, D., Nandagopal, S. & Lin, F. (2011), “Microfluidics for food, agriculture and biosystems industries,” Lab on Chip, 11 (9) pp.1574~1586.
Nie, Z. & Fung, Y. S. (2008), “Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin,” Electrophoresis, 29 (9) pp. 1924~1931.
Nuchtavorn, N., Smejka, P. l., Breadmore, M. C., Guijt, R. M., Doble, P., Bek, F., Foret, F., Suntornsuk, L. & Macka, M. (2013), “Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: Separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis,” Journal of Chromatography A, 1286 pp.216~221.
Obubuafo, A., Balamurugan, S., Shadpour, H., Spivak, D., McCarley, R. L. & Soper, S. A. (2008), “Poly(methyl methacrylate) microchip affinity capillary gel electrophoresis of aptamer–protein complexes for the analysis of thrombin in plasma,” Electrophoresis, 29 (16) pp.3621~3627.
Odijk, M., Baumann, A., Olthuis, W., Berg, A. V. D. & Karst, U. (2010), “Electrochemistry-on-chip for on-line conversions in drug metabolism studies,” Biosensors and Bioelectronics, 26 (4) pp.1521~1527.
Piirila, P. L., Nordman, H., Korhonen, O. S. & Winblad, l. (1996), “A thirteen-year follow-up of respiratory effects of acute exposure to sulfur dioxide,” Scandinavian Journal Work, Environment & Health, 22 (3) pp.191~196.
Possanzini, M. & Palo, V. D. (1997), “Determination of formaldehyde and acetaldehyde in air by HPLC with fluorescence detection,” Chromatographia, 46 (5-6) pp.235~240.
Puchtler, H., Meloan, S. N. & Brewton, B. R. (1975), “On the history of basic fuchsin and aldehyde-schiff reactions from 1862 to 1935”, Histochemistry, 41 (3) pp.185~194.
Puchtler, H., Meloan, S. N. & Brewton, B. R. (1975), “On structural formulas of basic fuchsin and aldehyde-schiff reaction products”, Histochemistry, 45 (4) pp.255~265.
Qin, L., Vermesh, O.,Shia, Q. & Heath, J. R. (2009), “Self-powered microfluidic chips for multiplexed protein assays from whole blood,” Lab on Chip, 9 (14) pp.2016~2020.
Qi, H., Wang, X., Chen, T., Ma, X. & Zuo, T. (2009), “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation”, Microsystem Technologies, 15 (7) pp.1027~1030.
Restani, P. & Galli, C. L. (1991), “Oral Toxicity of Formaldehyde and Its Derivatives,” Critical Reviews in Toxicology, 21 (5) pp.315~328.
Riahi, M. (2012), “Fabrication of a passive 3D mixer using CO2 laser ablation of PMMA and PDMS moldings,” Microchemical Journal, 100 pp.14~20.
Rios, A., Zougagh, M. & Avila, M. (2012), “Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review,” Analytica Chimica Acta, 740 pp.1~11.
Sakai, T., Sakamoto, T., Hallaert, J. & Vandamme, E. J. (1993), “Pectin, pectinase and protopectinase: production, properties, and applications,” Applied and Environmental Microbiology, 39 pp.213~294.
Schneider, K. & Gassel, T. J. V. (1984), “Membrane and distillation,” Chemie Ingenieur Technik, 56 pp.514~521.
Schiff, H. (1866), “Eine neue Reihe organischer Diamine,” Justus Liebigs Annalen der Chemie, 140 (1) pp.92~137.
Shih, Y. C., Liao, C. R., Chung, I. C., Chang, Y. S. & Chang, P. L. (2014), “Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: Application to the rapid screening of 5S rRNA from ovarian cancer cells,” Analytica Chimica Acta, 847 pp.73~79.
Sonni, F., Bastante, M. J. C., Chinnici, F., Natali, N. & Riponia, C. (2009), “Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: influence on volatile composition of white wines,” Journal of the Science of Food and Agriculture, 89 (4) pp.688~696.
Sugita, T., Ishiwata, H. & Yoshihira, K. (1988), “Comparative Studies on the Determination of Formaldehyde by the Acetylacetone and 4-Amino-3-hydrazino- 5-mercapto-1,2,4-triazole Methods,” Journal of the Food Hygienic Society of Japan, 29 (4) pp.273~279.
Tan, E., Turingan, R. S., Hogan, C., Vasantgadkar, S., Palombo, L., Schumm, J. W. & Selden, R. F. (2013), “Fully integrated, fully automated generation of short tandem repeat profiles,” Investigative Genetics, 4 (1) pp.1~15.
Terry, S. C., Jerman, J. H. & Angell, J. B. (1979), “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Transactions on Electron Devices, 26 (12) pp.1880~1886.
Thorsen, T., Maerkl, S. J. & Quake, S. R. (2002), “Microfluidic large-scale integration,” science, 298 (5593) pp.580~584.
Timmer, B. H., Delft, K. M. V., Olthuis, W., Bergveld, P. & Berg, A. V. D. (2003), “Micro-evaporation electrolyte concentrator,” Sensors and Actuators B, 91 (3) pp.342~346.
Toda, K., Koga, T., Tanaka, T., Ohira, S. I., Berg, J. M. & Dasgupta, P. K. (2010), “Miniature open channel scrubbers for gas collection,” Talanta, 82 (5) pp.1870~1875.
Toniolo, R., Pizzariello, A., Susmel, S., Dossi, N. & Bontempelli, G. (2010), “A sensor based on electrodes supported on ion-exchange membranes for the flow-injection monitoring of sulphur dioxide in wines and grape juices,” Talanta, 80 (50) pp.1809~1815.
Tonkovich, A. L., Jarosch, K., Arora, R., Silva, L., Perry, S., McDaniel, J., Daly, F. & Litt, B. (2008), “Methanol production FPSO plant concept using multiple microchannel unit operations,” Chemical Engineering Journal,135 (1) pp.S2~S8.
Tsai, C. H., Chen, H. T., Wang, Y. N., Lin, C. H. & Fu, L. M. (2007), “Capabilities and limitations of 2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sudden expansion microchannels,” Microfluidics and Nanofluidics, 3 (1) pp.13~18.
Vrhovec, S., Mally, M., Kavcic, B. & Derganc, J. (2011), “A microfluidic diffusion chamber for reversible environmental changes around flaccid lipid vesicles,” Lab on Chip, 11 (24) pp.4200~4206.
Wang, M. L., Wang, J. T. & Choong, Y. M. (2004), “A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography,” Journal of Food Composition and Analysis, 17 (2) pp. 187~196.
Wang, S., Cui, X. & Fang, G. (2007), “Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals”, Food Chemistry, 103 (4) pp. 1487~1493.
Wang, J. (2005), “Electrochemical Detection for Capillary Electrophoresis Microchips: A Review,” Electroanalysis, 17 (13) pp.1133~1140.
Wang, H., Liu, Y., Liu, C .C., Huang, J. Y., P. Y. Yang & Liu, B. H. (2010), “Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin,” Electrochemistry Communications, 12 (2) pp. 258~261.
Wang, G. R. (2005), “Laser induced fluorescence photobleaching anemometer for microfluidic devices,” Lab on Chip, 5 (4) pp.450~456.
Wang, Z. K., Zheng, H. Y., Lim, R. Y. H., Wang, Z. F. & Lam, Y. C. (2011), “Improving surface smoothness of laser-fabricated microchannels for microfluidic application,” Journal of Micromechanics and Microengineering, 21 (9) 095008.
Whitesides, G. M. (2006), “The origins and the future of microfluidics,” Nature, 442 pp.368~373.
Wood, P. J. & Siddiqui, I. R. (1971), “Determination of Methanol and Its Application to Measurement of Pectin Ester Content and Pectin Methyl Esterase Activity,” Analytical Biochemistry, 39 (2) pp.418~428.
Wu, P. W., Chang, C. C. & Chou, S. S. (2003), “Determination of formaldehyde in cosmetics by HPLC method and acetylacetone method,” Journal of Food and Drug Analysis, 11 (1) pp.8~15.
Wu, M. C., Jiang, C. M., Ho, Y. Y., Shen, S. C. & Chang, H. M. (2007), “Convenient quantification of methanol in juices by methanol oxidase in combination with basic fuchsin,” Food Chemistry, 100 (1) pp.412~418.
Wu, S., Zhou, Z., Xu, L., Su, B. & Fang, Q. (2014), “Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis,” Biosensors and Bioelectronics, 53 pp.148~153.
Wu Z. & Li D. (2008), “Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles,” Microfluidics and Nanofluidics, 5 (1) pp.67~76.
Yamada, M. , Nakada, T. & Suzuki, S. (1983), “The determination of sulfite in a flow injection system with chemiluminescence detection,” Analytica Chimica Acta, 147 pp.401~404.
Yang, F., Chen, Z., Pan, J., Li, X., Feng, J. & Yang, H. (2011), “An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics,” Biomicrofluidics, 5 (2) 024115.
Yeh, C. H., Lin, P. W. & Lin, Y. H. (2010), “Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures,” Microfluidics and Nanofluidics, 8 (1) pp.115~121.
Yen, M. H., Cheng, J. Y., Wei, C. W., Chuang, Y. C. & Young, T. H. (2006), “Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass,” Journal of Micromechanics and Microengineering, 16 pp.1143~1153.
Yuen, P. K., Kricka, L. J., Fortina, P., Panaro, N. J., Sakazume, T. & Wilding, P. (2014), “Microchip module for blood sample preparation and nucleic acid amplification reactions,” Cold Spring Harbor Laboratory Press, 11 (3) pp.405~412.
Zampolli, S., Elmia, I., Mancarella, F., Betti, P., Dalcanale, E., Cardinali, G. C. & Severi, M. (2009), “Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph,” Sensors and Actuators B: Chemical, 141 (1) pp.322~328.
Zhang, Y., Kato, S. & Anazaway, T. (2009), “Vacuum membrane distillation on a microfluidic chip,” Chemical Communications, (19) pp.2750~2752.
Zheng, H. Y. & Lee, T. (2005), “Studies of CO2 laser peeling of glass substrates,” Journal of Micromechanics and Microengineering, 15 (11) pp.2093~2097.
Zhu, J., Tzeng, T. J., Hu, G. & Xuan, X. (2009), “DC dielectrophoretic focusing of particles in a serpentine microchannel,” Microfluidics and Nanofluidics, 7 (6) pp.751~756.
Pohl, H., Liccione, J., Iannucci, A. (1998), “Toxicological profile for sulfur dioxide, public health service agency for toxic substances and disease registry,” U. S. Department of Health and Human Service.
Burwell, S. M. (1981), “Formaldehyde, report on carcinogens, thirteenth edition, national toxicology program,” U. S. Department of Health and Human Service.
London: H. M. Stationery Office (1924),“Food preservatives committee, formaldehyde in food, ”British medical journal.
Matter, P. (1979), “Sulfur dioxide and suspended particulate matter,” No.8, International Programme on Chemical Safety, World Health Organization.
International Agency for Research on Cancer, IARC (1992) “Monographs on the evaluation of the carcinogenic risk of chemicals to humans: occupational exposures to mists and vapours from strong inorganic acids, and other industrial chemicals Vol. 54,” Lyon, France: World Health Organization.
International Programme on Chemical Safety, IPCS (1997), “Health and safety guide No. 105. methanol, World Health Organization.
Liteplo, R. G., Beauchamp, R., Meek, M. E. & Chénier, R. (2002), “Concise international chemical assessment document 40 formaldehyde,” World Health Organization.
WHO (2005), “Modern food biotechnology, human health and development: an evidence-based study,” Food Safety Department, Word Health Organization.
食品中甲醛之檢驗方法(一) 衛署食字第0900018531號方法, TFDA
食品中甲醛之檢驗方法(二) 衛署食字第0900025822號方法, TFDA