簡易檢索 / 詳目顯示

研究生: 劉俊宏
Liou, Jyun-hong
論文名稱: 濃度極化現象於微/奈米管道之研究:奈米管道之幾何效應、樣本堆疊之應用
Concentration Polarization in Hybrid Micro/Nanochannels: Geometric Effect of Nanochannel and Application of Sample Stacking
指導教授: 楊瑞珍
Yang, Ruey-jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: 偏壓濃度極化電滲流離子累積離子排斥離子堆疊奈米管道
外文關鍵詞: bias-voltage, concentration polarization, electroosmotic flow, ion accumulation, ionic depletion, ion stacking, nanochannel
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用標準微影、蝕刻製程與熔接接合方式製造奈米與微米管道系統。當施加電場於此管道系統中時,由於奈米管道內部電雙層重疊現象,使得奈米管道內部產生離子選擇之特性。而造成奈米管道內正、負離子通量之差異,形成奈米介面處濃度極化之效應。而本文主要包含兩部份:(1)奈米管道幾何對於濃度極化之效應。(2)奈米管道於樣本堆疊之應用。
    第一部份,利用奈米管道對於離子之選擇特性,於奈米管道中形成一正離子通量。當施加電壓時,即造成於管道中高電位端產生濃度極化效應,於接地端產生離子聚集效應。濃度極化效應會造成局部離子消耗(depletion)現象,並產生高濃度梯度介面。本論文討論奈米管道長度與寬度對於離子消耗區域之影響。當改變奈米管道長度時消耗區域隨之變化,並且使用電性量測估算消耗區域內部導電率與電場強度。利用電流守恆與歐姆定律,將奈、微米管道系統之3維模組簡化成2維模組,模擬奈、微米介面之初始電場分佈。由模擬可知,當增加奈米管道寬度時,由於電場集中效應過大,導致奈米管道寬度被忽略。
    第二部份,利用奈米管道對於離子之選擇特性,因奈米管道中對負離子產生排斥現象,於電場作用下可觀察到消耗區之形成。本論文於管道系統中施予定電壓與偏壓模式,於管道內部分別產生離子累積現象與離子堆疊現象。本論文探討電壓差對於離子累積現象與離子堆疊現象之影響。離子累積現象由於受高電位端所造成電遷移作用與電場增幅區之影響,當增加其高電位端時,同時加強離子累積速度與濃度。離子堆疊現象是由於電壓差所造成電滲作用以及電場增幅區之排斥作用,而造成離子堆疊於其介面。當增加電壓差即增加電滲流之效應,同時增加其離子堆疊濃度。

    As the channel dimension scales down to the thickness of the electrical double layer, an inherent ion-permselectivity allows the counterions passing through the nanochannel but repels the coions out of the nanochannel. Under the action of an electrical field, the concentration polarization effect would generate the ionic depletion effect at the anodic side of the nanochannel. In this thesis, the ionic transport within the nanochahnel and the effect of concentration polarization were investigated. The fabrication of the nanochannel was achieved by using the standard photolithography and wet etching technique. The scope of this thesis includes: (1) geometric effect of nanochannel acts on concentration polarization. And (2) applications of nanochannel in microfluidics.
    The first part of this thesis, we change the nanochannel length and width to investigate the depletion region. We utilized electrical measurements to estimate the electrical conductivity and the electrical field intensity within the depletion region. Besides, a numerical simulation was conducted to compute the distribution of electrical field as the onset of the depletion effect. Results show the extent of depletion region is sensitive to the length effect, but is insensitive to the width of the nanochannel.
    The second part of this thesis, the bias-voltage model combining the ionic depletion effect was utilized to investigate the ion accumulation effect and ion stacking effect in microchannels. The ion accumulation is induced by the difference of the electromigration between the depletion region and non-depletion region. The bias-voltage model is used to generate an extra electroosmotic flow to create an ion convective flux into the stacking region. Results show both of the accumulation and stacking effect were enhanced when the bias was increased.

    中文摘要 I Abstract III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XVI 第一章 緒論 1 1.1前言 1 1.2微機電系統 1 1.3微流體晶片 3 1.4本文架構 4 第二章 電動現象、晶片製作與實驗架構 6 2.1電動現象 6 2.1.1電雙層 6 2.1.2電滲流 7 2.1.3電滲析與離子交換方式 8 2.1.4濃度極化 9 2.2晶片製作 10 2.2.1光罩製作 10 2.2.2晶片清洗 11 2.2.3光阻塗佈 11 2.2.4曝光 12 2.2.5顯影 12 2.2.6蝕刻 12 2.2.7光阻去除 13 2.2.8玻璃晶片鑽孔、對位及熔接接合 13 2.2.9掃描式電子顯微鏡 14 2.3實驗設備設置 14 2.3.1顯微鏡 14 2.3.2影像擷取單元(CCD) 15 2.3.3電源供應器 15 2.3.4微電流量測平台 16 2.3.5實驗之樣品液與緩衝液 16 第三章 奈米管道幾何對於濃度極化之效應 17 3.1研究動機 17 3.2文獻回顧 17 3.3晶片幾何設計、實驗操作條件與分析軟體 18 3.4實驗結果 19 3.4.1固定奈米管道寬度改變奈米管道長度 20 3.4.2固定奈米管道長度改變奈米管道寬度 21 3.4.3消耗長度內之導電率與電場強度 22 3.5討論 24 3.5.1電場分佈情形 24 3.5.2改變奈米管道長度 25 3.5.3改變奈米管道寬度 26 第四章 奈米管道於樣本堆疊之應用 27 4.1研究動機 27 4.2文獻回顧 27 4.3實驗儀器與電解液設置 28 4.4實驗結果與討論 29 4.4.1離子累積現象 30 4.4.2離子堆疊現象 32 第五章 結論與未來展望 34 5.1結論 34 5.2未來展望 35 參考文獻 36 附錄ㄧ 電性量測(電壓對應電流曲線) 92 附錄二 內部性質改變之趨勢 94 附錄三 穩態消耗區域與液壓影響之關係 96 附錄四 改善奈米管道形式 97 自述 98

    [01] Manz, A., Harrison, D. J., Verpoorte, E. M. J., Fetitinger, J. C., Paulus, A., Widmer, H. M. “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip”, Journal of Chromatography A, 593, 253-258, 1992.
    [02] Russel, W. B., Saville, D. A. and Schowalter, W. R. “Colloid science : principle and applied mathematics”, Cambridge University Press, Cambridge, 1989.
    [03] Gravsen, P., Branebjerg, O. J. and Jensen, S. “Microfluidics-a review”, Journal Micromechanics and Microengineering, 3, 168-182, 1993.
    [04] Harrison, D. J. and Berg, A., “Micro total analysis system 98”, Kluwer Academic Publishers, Netherlands 1998.
    [05] Volker, H., Holger, L., Friedhelm, S., “Micromixers-a reviewon passive and active mixing principles”, Chemical Engineering Science, 60, 2479-2501,2005.
    [06] Xia, H. M., Wan, S. Y. M., Shu, C. and Chewa, Y. T. “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers”, Lab on a Chip, 5, 748-755,2005.
    [07] Xi, H. M., Shu, C., Wan, S. Y. M. and Chew, Y. T. “Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques”, Journal Micromechanics and Microengineering , 16, 53-61, 2006.
    [08] Mengeaud, V., Josserand, J. and Girault, H. H. “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study”, Analytical Chemistry, 74, 4279-4286, 2002.
    [09] Huang, M. Z., Yang, R. J., Tai, C. H., Tsai, C. H. and Fu, L. M. “Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel”, Biomedical Microdevices, 8,309-315, 2006.
    [10] Oddy, M. H., Santiago, J. G. and Mikkelsen, J. C. “Electrokinetic Instability Micromixing”, Analytical Chemistry, Vol. 73, No. 24, 5822-5832 , 2001.
    [11] Suh, R., Takayama, S. and Smith, G. D. “Microfluidic applications for andrology ”, Journal of Andrology, 26, 664-670, 2005.
    [12] Wheeler, A. R., Throndset, W. R., Whelan, R. J., Leach, A. M. Zare, R. N., Liao, Y. H., Farrell, K., Manger, I. D. and Daridon, A. “Microfluidic device for single-cell analysis”, Analytical Chemistry, 75, 3581-3586, 2003.
    [13] Dittrich, P. S. and Manz, A. “Single-molecule fluorescence detection in microfluidic channels the Holy Grail in μTAS ”, Analytical and Bioanalytical Chemistry, 382, 1771-1782, 2005.
    [14] Stavis, S. M., Edel, J. B., Samiee, K. T. and Craighead, H. G. “Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel”, Lab on a Chip, 5, 337-343, 2005.
    [15] Whitesides, G. M. “The origins and the future of microfluidics”, Nature, 442, 368-370, 2006.
    [16] Santiago, J. G. “Electroosmotic flows in microchannels with finite inertial and pressure forces”, Analytical Chemistry, 73, 2353-2365, 2001.
    [17] Wainright, A., Nguyen, U. T., Bjornson, T. and Boone, T. D. “Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices”, Electrophoresis, 24, 3784-3792, 2003.
    [18] Mijatovic, D., Eijkel, J. C. T. and Berg, A. “Technologies for nanofluidic systems: topdown vs. bottom-up-a review”, Lab on a Chip, 5, 492-500, 2005.
    [19] Hunter, R. J. “Zeta potential in Colloid Science: Principle and Application”, Academic Press, New York, 1981.
    [20] Probstein, R. F. “Physicochemical hydrodynamics: an introduction”, John Wiley and Sons, New York, 1994.
    [21] Ronald, F. P. “Physicochemical hydrodynamics”, Wiley-Interscience, 1994.
    [22] Tanaka, Y. “Regularity in ion-exchange membrane characteristics and concentration of sea water”, Journal of Membrane Science, 163, 277-287, 1999.
    [23] Helfferich, F. “Ion-Exchange.”, McGraw-Hill, New York, 1962.
    [24] Dukhin, S. S. “Electrokinetic phenomena of the second kind and their application”, Colloid and Interface Science, 35, 173-196, 1991.
    [25] Lin, G. H., Lee, G. B., Lin, Y. H. and Chang, G. L. “A fast prototyping process for fabrication of microfluidic system on soda-lime glass”, Journal Micromechanics and Microengineering, 11, 726-732, 2001.
    [26] Rubinstein, I. and Htilman, L. “Voltage against Current Curves of Cation Exchange Membranes”, Chemical Science, 231-246, 1979.
    [27] Maletzki, F. Rosler, H. W. and Staude, E. “Ion tranfer across electrodialysis membrane in the overlimiting current range”, Journal of Membrane Science, 71, 105-115, 1992.
    [28] Barragan, V. M. and Ruız-Bauza, C. “Current-Voltage Curves for Ion-Exchange Membranes:A Method for Determining the Limiting Current Density”, Journal of Colloid and Interface Science, 205, 365-373, 1998.
    [29] Rubinstein, I. and Zaltzman, B. “Electro-osmotically induced convection at a permselective membrane”, Physical Review E, 62, 2238-2251, 2000.
    [30] Mishchuk, N. A. and Takhistov, P. V. “Electroosmosis of the second kind”, Colloids and Surfaces, 95, 119-131, 1995.
    [31] Mishchuk, N. A. “Electrophoresis of solid particles at large Peclet numbers” Electrophoresis, 23, 2012-2022, 2002.
    [32] Leinweber, F. C. and Tallarek, U. “Nonequilibrium electrokinetic effects in beds of ion-permselective particles”, Langmuir, 20, 11637-11648, 2004.
    [33] Pu, Q. “Ion-enrichment and ion-depletion Effect of Nanochannel Structures” Nano Letter, 4, 1099-1103, 2004.
    [34] Plecis, A., Schoch, R. B., Renaud, P. “Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a Chip”, Nano Letter, 5, 1147-1155, 2005.
    [35] Kim, S. J., Wang, Y. C., Lee, J. H., Hongchul, J. and Han, J. “Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel”, Physical Review Letter, 99, 044501, 2007.
    [36] Dhopeshwarkar, R. “Transient Effects on Microchannel Electrokinetic Filtering with an Ion-Permselective Membrane”, Analytical Chemistry, 80, 1039-1048, 2008.
    [37] Lichtenberg, J., Verpoorte, E., de Rooij, N. F. “Sample preconcentration by field amplification for microchip-based capillary electrophoresis”, Electrophoresis, 22, 258-271, 2001.
    [38] Yang, H. and Chien, R. L. “Sample stacking in laboratory-on-a-chip devices”, Journal of Chromatography A, 924, 155-163, 2001.
    [39] Jung, B., Bharadwaj, R., Santiago, J. G. “Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis”, Electrophoresis, 24, 3476-3483, 2003.
    [40] Bharadwaj, R. and Santiago, J. G. “Dynamics of field-amplified sample stacking”, Journal of Fluid Mechanical, 543, 57-92, 2005.
    [41] Kuo, T. C., Shannon, M. A. Bohn, P. W. and Sweedler, J. V. “Hybrid three-dimensional nanofluidics/microfluidics devices using molecular gates”, Sensors and Actuators A, 102, 223-233, 2003.
    [42] Song, S. Singh, A. K. and Kirby, B. J. “Electrophoretic Concentration of Proteins Laser-Patterned Nanoporous Membranes in Microchips”, Analytical Chemistry, 76, 4589-4592, 2004.
    [43] Wang, Y. C., Stevens, A. L. and Han, J. “Million-fold preconcentration of proteins and peptides by nanofluidic filter”, Analytical Chemistry, 77, 4293-4299, 2005.
    [44] Song, S. and Singh, A. K. “On-chip sample preconcentration for integrated microfluidic Analysis” Analytical and Bioanalytical Chemistry, 384, 41-43, 2006.
    [45] Kim, S. M., Burns, M. A. and Hasselbrink, E. F. “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip” Analytical Chemistry, 78, 4779-4785, 2006.
    [46] Lee, J. H., Chung, S. Kim, S. J. and Han, J. “Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown”, Analytical Chemistry, 79, 6868-6873, 2007.
    [47] Saleh, O. A. and Sohn, L. L. “An artificial nanopore for molecular sensing”, Nano Letter, 3, 37-38, 2003.
    [48] Fu, J. and Mao, P. “Nanofilter array chip for fast gel-free biomolecule separation”, Applied Physics Letter, 87, 263902, 2005.
    [49] Fu, J., Yoo, J. and Han, J. “Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays”, Physical Review Letters, 99, 018103, 2006.
    [50] Schoch, R. B., Cheow, L. F. and Han, J. “Electrical Detection of Fast Reaction Kinetics in Nanochannels with an Induced Flow” Nano Letter, 7, 3895-3900, 2007.
    [51] Fu, J., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. and Han, J. “A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins”, Nature nanotechnology, 2, 121-128, 2007.
    [52] Chueh, B. H., Huh, D., Kyrtsos, C. R., Houssin, T. Futai, N. and Takayama S. “Leakage-Free Bonding of Porous Membranes into Layered Microfluidic Array Systems” Analytical Chemistry, 79, 3504-3508, 2007.

    下載圖示 校內:2010-06-30公開
    校外:2010-06-30公開
    QR CODE