簡易檢索 / 詳目顯示

研究生: 葉韋呈
Yeh, Wei-Cheng
論文名稱: 使用非線性控制變量之完全連續選擇程序
Fully Sequential Selection Procedures with Nonlinear Control Variates
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 排序與選擇程序變異數減免技術非線性控制變量樣本平均近似法隨機近似法
外文關鍵詞: Ranking & Selection, Variance Reduction, Control Variate, Sample Average Approximation, Stochastic Approximation
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生活中的問題隨著科技發展越來越複雜,當問題難以使用數學模式分析時,利用系統模擬的技術,能夠放寬許多不合理假設以建立模型幫助決策。模擬領域發展排序與選擇程序,在問題的候選解不多時,幫助決策者選擇最佳系統。而排序與選擇程序在估計變異較大的系統績效表現值時,容易面臨抽樣過多及運算時間長等問題;模擬領域中發展之變異減免技術則可改善此問題,以變異數較小的估計量取代原本的平均數估計量,降低平均抽樣數,增加完全連續選擇程序之效率。在過去文獻中已有許多研究結合控制變量於完全連續選擇程序中,但皆需要假設導入控制變量的估計量符合線性模型假設。本研究欲放寬在完全連續選擇程
    序中的線性假設,使程序的應用範圍能擴大至非線性的領域,得以處理更複雜的問題。因此結合非線性控制變量於完全連續選擇程序中,討論導入非線性模型的影響,也證明新程序之統計保證性。
    在本研究中使用兩個隨機最佳化的方法幫助估計沒有封閉形式之非線性參數 。其一為樣本平均近似法,利用一組樣本定義變異數估計量,將其表示為非線性參數的函數,並求解出使變異數估計量最小化的非線性參數估計量 ;第二個方法為隨機近似法,在多階段的程序中,每個階段利用已設定好的步長函數,及用樣本估計而得的變異數之梯度來調整非線性參數 ,最後得到對於 非線性參數最佳解的估計。
    經由實驗發現本研究提出之FSP-SAA 及FSP-SA 除了能夠處理非線性的控制變量外,其平均抽樣數比過往文獻更少,並同時能符合信心水準。最後以選擇最高可靠度系統的問題為實例驗證,除了再次證實本研究之程序較過往文獻佳,也討論了使用線性及非線性控制變量的應用。

    In past studies, the Fully Sequential Selection Procedure (FSP) algorithm combined with Control Variate (CV) can only be applied under linear CV model. We propose two FSP algorithms with CV that allow the use of nonlinear CV estimation. In contrast to the linear CV model, we cannot expect to find a closed form expression for the parameter in nonlinear CV model. Therefore, we solve this problem by using two stochastic optimization approaches, which are Sample Average Approximation (SAA) and Stochastic Approximation (SA) respectively. The numerical experiments indicate that the probability of correct selection (PCS) can meet the desired confidence
    level, in addition, the effectiveness of variance reduction is more significant in our procedures.

    摘要i 英文延伸摘要ii 誌謝viii 目錄ix 表目錄xi 圖目錄xii 第一章緒論1 1.1 研究背景與動機.......... 1 1.2 研究架構............ 4 第二章文獻回顧5 2.1 排序與選擇程序.......... 5 2.2 線性控制變量........... 8 2.3 非線性控制變量.......... 11 2.3.1 樣本平均近似法(SAA)........ 15 2.3.2 隨機近似法(SA).......... 17 2.4 合併CV之排序與連續選擇程序....... 18 2.5 小結............. 20 第三章研究方法21 3.1 完全連續選擇程序........... 21 3.2 結合SAA 之完全連續選擇程序....... 22 3.3 結合SA之完全連續選擇程序........ 25 第四章實驗設計與分析29 4.1 實驗評估............ 29 4.2 實驗結果............ 31 4.2.1 p 收斂特性........... 31 4.2.2 SC 問題實驗結果比較........ 33 4.3 實例驗證............ 37 第五章結論與未來研究方向43 5.1 結論............. 43 5.2 未來研究方向........... 44 參考文獻45 A Appendix 49 A.1 Assumptions for the Nonlinear CV Estimation...... 49 A.2 Proof of Theorem 3........... 51 A.2.1 Strong Law of Large Numbers....... 51 A.2.2 Central Limit Theorem......... 51

    宋奇檠. (2016). 合併變異數縮減技術於完全連續選擇程序. 成功大學工業與資訊管
    理學系學位論文.
    蔡承濂. (2017). 以更有效率之方式結合控制變量於完全連續選擇程序. 成功大學工
    業與資訊管理學系學位論文.
    A˜nonuevo, R., & Nelson, B. L. (1988). Automated estimation and variance reduction via
    control variates for infinite-horizon simulations. Computers & Operations Research,
    15(5), 447-456.
    Avramidis, A. N., & Wilson, J. R. (1996). Integrated variance reduction strategies for
    simulation. Operations Research, 44(2), 327-346.
    Bauer Jr, K. W., Venkatraman, S., & Wilson, J. R. (1987, December). Estimation procedures
    based on control variates with known covariance matrix. In Proceedings of the
    19th conference on Winter simulation (pp. 334-341). ACM.
    Bauer Jr, K.W., &Wilson, J. R. (1992). Control-variate selection criteria. Naval Research
    Logistics (NRL), 39(3), 307-321.
    Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means
    of normal populations with known variances. The Annals of Mathematical Statistics,
    16-39.
    Billingsley, P. (1986). Probability and measure. John Wiley & Sons.
    Billingsley, P. (1999). Convergence of probability measures. John Wiley & Sons.
    Chen, E. J., & Kelton, W. D. (2000). A stopping procedure based on phi-mixing conditions.
    In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165)
    (Vol. 1, pp. 617-626). IEEE.
    Fu, M. C. (Ed.). (2015). Handbook of simulation optimization (Vol. 216). New York:
    Springer.
    Glynn, P.W., & Iglehart, D. L. (1995). A Martingale approach to regenerative simulation.
    Probability in the Engineering and Informational Sciences, 9(1), 123-131.
    45
    Gupta, S.S., (1956). On a decision rule for a problem in ranking means. Ph.D. dissertation
    Institute of Statistics, University of North Carolina, Chapel Jill, NC.
    Henderson, S. G., & Glynn, P. W. (2002). Approximating martingales for variance reduction
    in Markov process simulation. Mathematics of Operations Research, 27(2),
    253-271.
    Kim, S., & Henderson, S. G. (2007). Adaptive control variates for finite-horizon simulation.
    Mathematics of Operations Research, 32(3), 508-527.
    Kim, S., & Henderson, S. G. (2004, December). Adaptive control variates. In Proceedings
    of the 36th conference on Winter simulation (pp. 621-629). Winter Simulation
    Conference.
    Kim, S. H., & Nelson, B. L. (2001). A fully sequential procedure for indifference-zone
    selection in simulation. ACM Transactions on Modeling and Computer Simulation
    (TOMACS), 11(3), 251-273.
    Kim, S. H., & Nelson, B. L. (2006). On the asymptotic validity of fully sequential selection
    procedures for steady-state simulation. Operations Research, 54(3), 475-488.
    Kim, S. H., Nelson, B. L., & Wilson, J. R. (2005). Some almost-sure convergence properties
    useful in sequential analysis. Sequential Analysis, 24(4), 411-419.
    Kollman, C., Baggerly, K., Cox, D., & Picard, R. (1999). Adaptive importance sampling
    on discrete Markov chains. Annals of Applied Probability, 391-412.
    Kwon, C., & Tew, J. D. (1994). Strategies for combining antithetic variates and control
    variates in designed simulation experiments. Management Science, 40(8), 1021-1034.
    Lavenberg, S. S., & Welch, P. D. (1981). A perspective on the use of control variables
    to increase the efficiency of Monte Carlo simulations. Management Science, 27(3),
    322-335.
    Lesnevski, V., Nelson, B. L., & Staum, J. (2007). Simulation of coherent risk measures
    based on generalized scenarios. Management Science, 53(11), 1756-1769.
    Luo, J., Hong, L. J., Nelson, B. L., &Wu, Y. (2015). Fully sequential procedures for large-
    46
    scale ranking-and-selection problems in parallel computing environments. Operations
    Research, 63(5), 1177-1194.
    Nelson, B. L. (1989). Batch size effects on the efficiency of control variates in simulation.
    European Journal of Operational Research, 43(2), 184-196.
    Nelson, B. L. (1990). Control variate remedies. Operations Research, 38(6), 974-992.
    Nelson, B. L., & Hsu, J. C. (1993). Control-variate models of common random numbers
    for multiple comparisons with the best. Management Science, 39(8), 989-1001.
    Nelson, B. L., & Staum, J. (2006). Control variates for screening, selection, and estimation
    of the best. ACM Transactions on Modeling and Computer Simulation
    (TOMACS), 16(1), 52-75.
    Pichitlamken, J., Nelson, B. L., & Hong, L. J. (2006). A sequential procedure for neighborhood
    selection-of-the-best in optimization via simulation. European Journal of
    Operational Research, 173(1), 283-298.
    Rinott, Y. (1978). On two-stage selection procedures and related probability-inequalities.
    Communications in Statistics-Theory and methods, 7(8), 799-811.
    Ripley, B. D. (1987). Stochastic simulation (Vol. 5). New York et al.: Wiley.
    Sabuncuoglu, I., Fadiloglu, M. M., & C¸ elik, S. (2008). Variance reduction techniques:
    experimental comparison and analysis for single systems. IIE Transactions, 40(5),
    538-551.
    Spall, J. C. (2005). Introduction to stochastic search and optimization: estimation, simulation,
    and control (Vol. 65). John Wiley & Sons.
    Tsai, S. C., & Kuo, C. H. (2012). Screening and selection procedures with control variates
    and correlation induction techniques. Naval Research Logistics (NRL), 59(5), 340-
    361.
    Tsai, S. C., & Nelson, B. L. (2009). Fully sequential selection procedures with control
    variates. IIE Transactions, 42(1), 71-82.
    Tsai, S. C., Nelson, B. L., & Staum, J. (2009). Combined screening and selection of the
    47
    best with control variates. In Advancing the Frontiers of Simulation (pp. 263-289).
    Springer, Boston, MA.
    Yang, W. N., & Liou, W. W. (1996). Combining antithetic variates and control variates in
    simulation experiments. ACM Transactions on Modeling and Computer Simulation
    (TOMACS), 6(4), 243-260.
    Yang, W. N., & Nelson, B. L. (1991). Using common random numbers and control variates
    in multiple-comparison procedures. Operations Research, 39(4), 583-591.
    Yang, W. N., & Nelson, B. L. (1992). Multivariate batch means and control variates.
    Management science, 38(10), 1415-1431.

    下載圖示 校內:2024-06-28公開
    校外:2024-06-28公開
    QR CODE