| 研究生: |
陳德泉 Chen, De-Quan |
|---|---|
| 論文名稱: |
高解析度超音波定位顯微造影應用於大鼠神經血管成像 High-resolution ultrasound localization microscopy for neurovascular imaging in rat model |
| 指導教授: |
黃執中
Huang, Chih-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 微血管系統 、超音波定位顯微鏡 、都卜勒成像 、神經血流 、慢性神經壓迫 、周圍神經 |
| 外文關鍵詞: | Microvascular system, Ultrasound localization microscopy, Doppler imaging, Nerve blood flow, Chronic nerve compression, Peripheral nerves |
| 相關次數: | 點閱:49 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
慢性神經壓迫 (CNC) 損傷是人類神經性疼痛和周圍神經功能障礙的常見原因。在以前的研究中,臨床檢查和電診斷研究仍然是診斷神經損傷的標準,但它們可能難以診斷患有糖尿病等伴隨疾病的患者的慢性神經壓迫損傷。在以往的研究中,缺血和壓迫可導致慢性神經損傷且在壓迫初期神經發炎情況下會有微血管網路出現在神經內側,因此一種可以可視化神經血管並計算血流速度的成像方法可能是評估早期慢性神經壓迫損傷的潛在指標。
本實驗中採用一種基於超音波顯影劑定位的技術的方式對慢性神經壓迫損傷的老鼠做分析用於確認神經中大血管的損傷情況與其作用,並將超音波定位顯微鏡技術引入實驗中,希望找到微血管結構變化在神經壓迫損傷中扮演的角色。實驗結果說明超音波定位顯微鏡技術可對神經內血流情況與微血管結構做追蹤與評估,因此可以得出結論,超音波定位顯微鏡可以評估早期慢性神經壓迫損傷。
Chronic nerve compression (CNC) injury is a common cause of neuropathic pain and peripheral nerve dysfunction in humans. Clinical examination and electrodiagnostic studies remain the gold standard for diagnosing nerve injury in previous studies. Still, it can be difficult to diagnose chronic nerve compression injury in patients with concomitant diseases such as diabetes. In previous studies, ischemia and compression lead to chronic nerve compression, so an imaging method that can visualize nerve vessels and calculate blood flow velocity may be a potential indicator for evaluating early chronic nerve compression injury.
In this experiment, the method based on an ultrasonic contrast agent was used to analyze the chronic nerve compression injury in rats to confirm the damage and function of the nerve and large blood vessels. Then the ultrasonic localization microscopy technology was introduced into the experiment, hoping to find the microvascular structure. Alter the effect of nerve compression injury. The experimental results show that the ultrasound localization microscopy technique can track and evaluate the nerve's blood flow and vascular structure. Therefore, it can be concluded that ultrasound localization microscopy can assess early chronic nerve compression. damage.
[1] Alexandrescu, V., Soderstrom, M., & Venermo, M. (2012). Angiosome Theory: Fact or Fiction? Scandinavian Journal of Surgery, 101(2), 125-131. https://doi.org/Doi 10.1177/145749691210100209
[2] Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 28(1), 5-24. https://doi.org/Doi 10.1016/S0169-409x(97)00048-3
[3] Appis, A. W., Tracy, M. J., & Feinstein, S. B. (2015). Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract, 2(2), R55-62. https://doi.org/10.1530/ERP-15-0018
[4] Banterle, N., Bui, K. H., Lemke, E. A., & Beck, M. (2013). Fourier ring correlation as a resolution criterion for super-resolution microscopy. Journal of Structural Biology, 183(3), 363-367. https://doi.org/10.1016/j.jsb.2013.05.004
[5] Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642-1645. https://doi.org/10.1126/science.1127344
[6] Calliada, F., Campani, R., Bottinelli, O., Bozzini, A., & Sommaruga, M. G. (1998). Ultrasound contrast agents - Basic principles. European Journal of Radiology, 27, S157-S160. https://doi.org/Doi 10.1016/S0720-048x(98)00057-6
[7] Christensen-Jeffries, K., Couture, O., Dayton, P. A., Eldar, Y. C., Hynynen, K., Kiessling, F., O'Reilly, M., Pinton, I. G. F., Schmitz, G., Tang, M. X., Tanter, M., & Van Sloun, R. J. G. (2020). Super-Resolution Ultrasound Imaging. Ultrasound in Medicine and Biology, 46(4), 865-891. https://doi.org/10.1016/j.ultrasmedbio.2019.11.013
[8] Dale, A. M., Harris-Adamson, C., Rempel, D., Gerr, F., Hegmann, K., Silverstein, B., Burt, S., Garg, A., Kapellusch, J., Merlino, L., Thiese, M. S., Eisen, E. A., & Evanoff, B. (2013). Prevalence and incidence of carpal tunnel syndrome in US working populations: pooled analysis of six prospective studies. Scandinavian Journal of Work Environment & Health, 39(5), 495-505. https://doi.org/10.5271/sjweh.3351
[9] Demene, C., Deffieux, T., Pernot, M., Osmanski, B. F., Biran, V., Gennisson, J. L., Sieu, L. A., Bergel, A., Franqui, S., Correas, J. M., Cohen, I., Baud, O., & Tanter, M. (2015). Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity. Ieee Transactions on Medical Imaging, 34(11), 2271-2285. https://doi.org/10.1109/Tmi.2015.2428634
[10] Gupta, R., Rowshan, K., Chao, T., Mozaffar, T., & Steward, O. (2004). Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Experimental Neurology, 187(2), 500-508. https://doi.org/10.1016/j.expneurol.2004.02.009
[11] Heiles, B., Correia, M., Hingot, V., Pernot, M., Provost, J., Tanter, M., & Couture, O. (2019). Ultrafast 3D Ultrasound Localization Microscopy Using a 32 x 32 Matrix Array. Ieee Transactions on Medical Imaging, 38(9), 2005-2015. https://doi.org/10.1109/Tmi.2018.2890358
[12] Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91(11), 4258-4272. https://doi.org/10.1529/biophysj.106.091116
[13] Kadi, A. P., & Loupas, T. (1995). On the Performance of Regression and Step-Initialized Iir Clutter Filters for Color Doppler Systems in Diagnostic Medical Ultrasound. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 42(5), 927-937. https://doi.org/Doi 10.1109/58.464825
[14] Kremkau, F. W. (2014). Sonography principles and instruments (8th ed.). Saunders.
[15] Lockwood, G. R., Turnbull, D. H., Christopher, D. A., & Foster, F. S. (1996). Beyond 30 MHz - Applications of high-frequency ultrasound imaging. Ieee Engineering in Medicine and Biology Magazine, 15(6), 60-71. https://doi.org/Doi 10.1109/51.544513
[16] Montaldo, G., Tanter, M., Bercoff, J., Benech, N., & Fink, M. (2009). Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 56(3), 489-506. https://doi.org/10.1109/Tuffc.2009.1067
[17] Pelletier, J., Fromy, B., Morel, G., Roquelaure, Y., Saumet, J. L., & Sigaudo-Roussel, D. (2012). Chronic sciatic nerve injury impairs the local cutaneous neurovascular interaction in rats. Pain, 153(1), 149-157. https://doi.org/10.1016/j.pain.2011.10.001
[18] Pelletier, J., Roudier, E., Abraham, P., Fromy, B., Saumet, J. L., Birot, O., & Sigaudo-Roussel, D. (2015). VEGF-A Promotes Both Pro-angiogenic and Neurotrophic Capacities for Nerve Recovery After Compressive Neuropathy in Rats. Molecular Neurobiology, 51(1), 240-251. https://doi.org/10.1007/s12035-014-8754-1
[19] Qian, X. J., Huang, C. W., Li, R. Z., Song, B. J., Tchelepi, H., Shung, K. K., Chen, S. G., Humayun, M. S., & Zhou, Q. F. (2022). Super-Resolution Ultrasound Localization Microscopy for Visualization of the Ocular Blood Flow. Ieee Transactions on Biomedical Engineering, 69(5), 1585-1594. https://doi.org/10.1109/Tbme.2021.3120368
[20] Qing, L. M., Lei, P. F., Tang, J. Y., Wu, P. F., Wang, L., Xie, J., & Hu, Y. H. (2017). Inflammatory response associated with choke vessel remodeling in the extended perforator flap model. Experimental and Therapeutic Medicine, 13(5), 2012-2018. https://doi.org/10.3892/etm.2017.4205
[21] Schiefler, N. T., Maia, J. M., Schneider, F. K., Zimbico, A. J., Assef, A. A., & Costa, E. T. (2018). Generation and Analysis of Ultrasound Images Using Plane Wave and Sparse Arrays Techniques. Sensors, 18(11). https://doi.org/ARTN 3660
10.3390/s18113660
[22] Shung, K. K. (2015). Diagnostic ultrasound : imaging and blood flow measurements (2nd edition. ed.). CRC Press.
[23] Sommer, C., Galbraith, J. A., Heckman, H. M., & Myers, R. R. (1993). Pathology of Experimental Compression Neuropathy Producing Hyperesthesia. Journal of Neuropathology and Experimental Neurology, 52(3), 223-233. https://doi.org/Doi 10.1097/00005072-199305000-00006
[24] Song, P. F., Manduca, A., Trzasko, J. D., & Chen, S. G. (2017). Ultrasound Small Vessel Imaging With Block-Wise Adaptive Local Clutter Filtering. Ieee Transactions on Medical Imaging, 36(1), 251-262. https://doi.org/10.1109/Tmi.2016.2605819
[25] Szabo, T. (2004). Diagnostic ultrasound imaging : inside out. Elsevier Academic.
[26] Viessmann, O. M., Eckersley, R. J., Christensen-Jeffries, K., Tang, M. X., & Dunsby, C. (2013). Acoustic super-resolution with ultrasound and microbubbles. Physics in Medicine and Biology, 58(18), 6447-6458. https://doi.org/10.1088/0031-9155/58/18/6447
[27] Wheatley, M. A., Forsberg, F., Oum, K., Ro, R., & El-Sherif, D. (2006). Comparison of in vitro and in vivo acoustic response of a novel 50 : 50 PLGA contrast agent. Ultrasonics, 44(4), 360-367. https://doi.org/10.1016/j.ultras.2006.04.003
[28] Yoo, Y. M., Managuli, R., & Kim, Y. (2003). Adaptive clutter filtering for ultrasound color flow imaging. Ultrasound in Medicine and Biology, 29(9), 1311-1320. https://doi.org/10.1016/S0301-5629(03)01014-7
[29] Yu, A. C. H., & Cobbold, R. S. C. (2008). Single-ensemble-based eigen-processing methods for color flow imaging - Part II. The matrix pencil estimator. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55(3), 573-587. https://doi.org/10.1109/Tuffc.2008.683