簡易檢索 / 詳目顯示

研究生: 尤信介
Yu, Hsin-Chieh
論文名稱: 砷化鎵系列氧化侷限面射型雷射之研製
Investigation and Fabrication of GaAs-based Oxide-Confined Vertical Cavity Surface Emitting Lasers
指導教授: 張守進
Chang, S. J.
蘇炎坤
Su, Y. K.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 177
中文關鍵詞: 面射型雷射單模氧化侷限砷化鎵長波長
外文關鍵詞: VCSEL, oxide-confined, GaAs, long wavelength, single mode
相關次數: 點閱:196下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要目的在於探討紅外光面射型雷射的製程方法以及特性改良相關研究,特別針對光通訊傳輸模組最常用的850奈米與1.3微米波長範圍,利用砷化鎵材料系統所成長的面射型雷射結構,開發出一種適用於各種不同活性層材料的選擇性氧化侷限面射型雷射元件製程技術。並對該結構潛在的缺點加以改良,以獲得更優異的操作特性,滿足高速光通訊傳輸模組主動光源的應用需求。

      利用該製程方法所製作的850奈米選擇性氧化面射型雷射元件,在電流侷限氧化孔徑於7微米左右時具有最佳之操作特性,典型的臨界電流值低於2毫安,輸出功率在8毫安電流驅動下大於2毫瓦,並在驅動電流15毫安時達到最高輸出功率。所製造之元件經高溫加速壽命測試已驗證可在攝氏七十度下連續波操作超過一萬小時,常溫下理論壽命可達一千萬小時以上。當電流侷限氧化孔徑縮小到4~5微米左右時,具有相當優異的單橫模操作特性,其旁模抑制比可達30分貝;此外該製程方法在經過質子佈植製程後,所製造之元件可輕易操作在每秒百億位元以上的調變速度,符合高速光通訊傳輸模組主動光源的特性需求。與先前其他研究報告與產品相較之下,本文所開發之選擇性氧化面射型雷射製程相對簡單許多,因此可有效降低製造成本同時獲得優異操作特性,是一種相當適合量產的製程技術。

      除850奈米面射型雷射以外,現今常見的砷化鎵材料系統1.3微米活性層材料包括氮砷化銦鎵量子井、高應變砷化銦鎵量子井以及砷化銦量子點結構等。本文同時採用這三種活性層材料來製作選擇性氧化面射型雷射,均已成功研製出室溫連續波操作,且波長符合1.3微米範圍的砷化鎵系統面射型雷射元件,是目前為止台灣唯一同時成功研製出上述三種砷化鎵系統長波長面射型雷射的紀錄。其中具有全摻雜分佈布拉格反射器的量子點面射型雷射是世界首次達到室溫連續波操作的紀錄之一。

      本文所開發之簡便可靠的選擇性氧化面射型雷射製程技術,已經驗證能同時應用於波長850奈米與1.3微米之砷化鎵系統面射型雷射。然而為製作具有更高旁模抑制比的單橫模面射型雷射,本文亦將展示利用最新開發的光子晶體結構來達成40分貝以上的旁模抑制比。該技術僅需加入一道額外的蝕刻製程步驟,可整合到現行的製程技術以製作出同時具備高速特性與單橫模操作能力的單一元件,為高速光纖網路傳輸模組提供一穩定可靠的主動光源製造技術。

     The main purpose of this dissertation is investigating the processing technology and characteristics improvement of infrared vertical cavity surface emitting lasers (VCSELs), especially emphasis on 850nm and 1.3μm wavelength region, which are the commonest used wavelength in the optical communication transceiver modules. A selective oxide-confined VCSEL processing technology has been developed and is adequate for the application of GaAs-based VCSELs containing different active regions. The possible drawbacks of the designed VCSEL structure have been improved, so as to obtain superior operation performance to satisfy the requirement of high-speed optical communication transceiver module active light source application.

     The 850nm oxide-confined VCSELs (OC-VCSELs) fabricated by this processing method have the best performances when the current confinement oxide aperture diameter are about 7μm, and the typical threshold current are less than 2mA. The output power can be higher than 2mW at 8mA drive current, and reach the maximum output power at about 15mA. The fabricated devices have already been verified by the high temperature accelerated aging test, and show that the devices possess the ability of continuous-wave (CW) operation under 70℃ for more than 10000hours. The room temperature (RT) median lifetime can be up to 107hours! When the oxide aperture diameter are shrunk down to 4-5μm the devices have excellent single transverse mode (SM) operation characteristics, and the side mode suppression ratio (SMSR) can be up to 30dB. Besides that the fabricated devices can be easily modulated up to 10Giga-bit-per-second (Gbps) by adding an additional proton implantation process, and satisfy the requirement of high-speed optical communication transceiver module active light source application. By comparing with previous reports and commercial products, the selective oxide-confined VCSELs processing technology developed in this dissertation is relatively much simpler, and can reduce the manufacturing cost and obtain superior operation characteristics at the same time, which is fit to be used as mass production processing technology.

     Besides the 850nm VCSELs, the commonly used GaAs-based active layer materials emitting in the 1.3μm region including InGaAsN quantum wells (QWs), highly strained InGaAs QWs and InAs/InGaAs quantum Dots (QDs) structures, etc. In this dissertation these three active layer materials will be adopted to fabricate OC-VCSELs at the same time, and successfully implemented RT CW operation with emission wavelength corresponding to 1.3μm range. This is the only record here in Taiwan that successfully fabricates these three kinds of GaAs-based long-wavelength (LW) VCSELs up to present day.

     The simple and reliable OC-VCSELs processing technology developed in this dissertation has already been verified can be applied for both 850nm and 1.3μm GaAs-based VCSELs fabrication simultaneously. In order to fabricate VCSELs with higher SMSR, it will be also demonstrated in this dissertation that using the latest photonic-crystal (PC) structure to accomplish the 40dB SMSR. This technology just needs to introduce an additional etching process, and can be integrated with current processing technology to fabricate single device. Thus the fabricated device can possess high-speed and SM operation ability at the same time, so as to provide a stable and reliable light source fabrication technology for high-speed fiber-optics transceiver modules application.

    Table of Contents Abstract (in Chinese) Ⅰ Abstract (in English) Ⅱ Acknowledgement Ⅳ Acronyms and Abbreviations Ⅴ Table of Contents Ⅵ Table Captions Ⅷ Figure Captions Ⅸ Chapter 1 Introduction 1 1-1 A Brief History of Vertical Cavity Surface Emitting Laser (VCSEL) 2 1-2 Organization of this Dissertation 5 Bibliography 8 Chapter 2 OC-VCSEL Processing Technology Development 17 2-1 General Process Procedure and Parameter Tuning 18 2-1-1 Dielectric Material Deposition 20 2-1-2 Reactive Ion Etching 21 2-1-3 Metallization 23 2-2 Selective Wet Oxidation 25 2-2-1 Oxidation Furnace Calibration 26 2-2-2 Oxidation Mechanism and Control 26 2-3 Different OC-VCSEL Structures 29 2-3-1 Trench Structure 31 2-3-2 Multi-Hole Quasi-Planar Structure 33 2-4 Bridge Structure and Devices Characteristics 34 2-5 Reliability and ESD Test 38 2-6 Summary 41 Bibliography 43 Chapter 3 Improvement of the Modulation Speed of OC-VCSEL 82 3-1 High-Speed Operation Characteristics 82 3-1-1 High-Speed Operation Considerations of OC-VCSEL 82 3-1-2 Eye Diagram Measurement 83 3-1-3 3dB-Modulation Bandwidth Measurement 84 3-2 Coplanar Metal Contact OC-VCSEL 84 3-3 OC-VCSEL with Proton Implantation 86 3-3-1 SRIM Simulation 87 3-3-2 Eye Diagram Measurement 88 3-3-3 3dB-Modulation Bandwidth Measurement 90 3-4 Summary 91 Bibliography 93 Chapter 4 Improvement of the Single-Mode Operation Characteristics 109 of VCSEL 4-1 Side-Mode-Suppression-Ratio of OC-VCSEL 110 4-2 Hybrid Oxide-Implant Method 112 4-3 Surface-Relief Method 114 4-3-1 Metal Surface-Relief 114 4-3-2 Si Surface-Relief 115 4-3-3 Ge Surface-Relief 116 4-4 Photonic-Crystal Technology 117 4-5 Summary 119 Bibliography 120 Chapter 5 Processing Technology for 1.3μm OC-VCSEL 138 Fabrication Application 5-1 InGaAsN Double-Quantum-Wells (DQWs) OC-VCSEL 139 Emitting in 1.3μm range. 5-2 Highly Strained InGaAs DQWs OC-VCSEL Emitting in 1.25μm. 140 5-3 Self-Assembled InAs Quantum-Dots (QDs) OC-VCSEL 141 Emitting in 1.3μm range. 5-4 Oxide-Mode Investigation of Long Wavelength OC-VCSEL 146 5-5 Summary 149 Bibliography 151 Chapter 6 Conclusions and Prospects 168 6-1 Conclusions 168 6-2 Prospects 171

    [1] Bernhard E. Keiser and Eugene Strange, “Digital Telephony and Network
    Integration, 2nd Edition,” ©Van Nostrand Reinhold/Internal Thomson
    Publishing Inc., New York, pp. 333-348, 1995.
    [2] J. P.Gordon, “Quantum Effects in Communication Systems,” Proc. IRE,
    vol.50, No. 9, pp. 1898-1908, Sep. 1982.
    [3] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J .Soltys, and R. O. Carlson,
    “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9,
    pp. 366-268, Nov. 1, 1962.
    [4] N. Holonyak, Jr., and S. F. Bevacqua, “Coherent (visible) light emission
    from Ga(As1-xPx) junctions,” Appl. Phy. Lett., vol. 1, pp. 82-83, Dec.
    1962.
    [5] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher,
    “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phy.
    Lett., vol. 1, pp. 62-64, Nov. 1962.
    [6] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L.
    McWhorter, and H. J. Zeiger, “Semiconductor maser of GaAs,” Appl. Phy.
    Lett., vol. 1, pp. 91-92, Dec. 1962.
    [7] N. Holonyak, Jr., “The Semiconductor Laser : A Thirty-Five-Year
    Perspective,” Proc. IEEE, vol. 85, No.11, pp. 1678-1693, Nov. 1997.
    [8] H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc.
    IEEE, vol. 51, pp. 1782-1783, Dec. 1963. See also H. Kroemer, “Theory of
    a wide-gap emitter for transistors,” Proc. IRE, vol.45, pp. 1535-1537,
    Nov.1957.
    [9] Zh. I. Alfërov and R. F. Kazarinov, Authors Certificate 181737 (USSR),
    1963.
    [10] L. Esaki and R. Tsu, “Superlattice and negative differential conductivity
    in semiconductors,” IBM J. Res. Develop. vol. 16, pp. 61-65, Jan. 1970.
    [11] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers, 2nd Edition”
    ©Van Nostrand Reinhold, New York, 1993.
    [12] G. P. Agrawal, “Semiconductor Lasers : Past, Present, and Future,”
    ©American Institute of Physics Press, Woodbury, New York, pp. XV-XX, 1995.
    [13] H. Soda, K. Iga, C. Kitahara, and Y. Suematus, “GaInAsP/InP surface
    emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329-2330,
    1979.
    [14] K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New
    Optoelectronics Field,” IEEE J. Select. Topics Quantum Electron., vol. 6,
    pp. 1201-1215, 2000.
    [15] E. Towe, R. F. Leheny, and A. Yang, “A Historical Perspective of the
    Development of the Vertical-Cavity Surface-Emitting Laser,” IEEE J.
    Select. Topics Quantum Electron., vol. 6, pp. 1458-1464, 2000.
    [16] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature
    pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl.
    Phys. Lett., vol. 45, pp.348-350, 1984.
    [17] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave
    lasing characteristics of GaAs vertical-cavity surface-emitting lasers,”
    Appl. Phys. Lett., vol. 55, pp.221-222, 1989.
    [18] P. L. Gourley, K. L. Lear, and J. R. P. Schneider, “A different mirror,”
    IEEE Spectrum, vol. 31, pp. 31-37, 1994.
    [19] K. D. Choquette, H. Q. Hou, “Vertical-cavity surface emitting lasers:
    Moving from reach to manufacturing,” Proc. IEEE, vol. 85, pp. 1730-1739,
    1997.
    [20] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley,
    “Design, fabrication, and performance of infrared and visible vertical-
    cavity surface- emitting lasers,” IEEE J. Quantum Electron., vol. 33, pp.
    1810-1824, 1997.
    [21] W. T. Tsang, “Self-terminating thermal oxidation of AlAs epilayers grown
    on GaAs by molecular beam epitaxy,” Appl. Phys. Lett., vol. 33, pp. 426-
    429, 1978.
    [22] J. M. Dallesasse, N. Holonyak, Jr., A. R. Sugg, T. A. Richard, and N. El-
    Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well hetero-
    structures and superlattices,” Appl. Phys. Lett., vol. 57, pp. 2844-2846,
    1990.
    [23] J. M. Dallesasse and N. Holonyak, Jr., “Native-oxide stripe-geometry
    AlxGa1-xAs-GaAs quantum well heterostructure lasers,” Appl. Phys. Lett.,
    vol. 58, pp. 394-396, 1991.
    [24] F. A. Kish, S. J. Caracci, N. Holonyak, Jr., J. M. Dallesasse, K. C.
    Hsieh, M. J. Ries, S. C. Smith, and R. D. Burnham, “Planar native-oxide
    index-guided AlxGa1-xAs-GaAs quantum well heterostructure lasers,” Appl.
    Phys. Lett., vol. 59, pp. 1755-1757, 1991.
    [25] S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak, Jr., “Native
    oxide top- and bottom-confined narrow stripe p-n AlyGa1-yAs-GaAs-InxGa1-xAs
    quantum well heterostructure laser,” Appl. Phys. Lett., vol. 63, pp. 1660-
    1662, 1993.
    [26] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide
    defined ring contact for low threshold vertical-cavity lasers,” Appl.
    Phys. Lett., vol. 65, pp. 97-99, 1994.
    [27] K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low
    threshold voltage vertical-cavity lasers fabricated by selective
    oxidation,” Electron. Lett., vol. 30, pp. 2043-2044, 1994.
    [28] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J.
    Figiel, and R. Hull, “Fabrication and performance of selectively oxidized
    vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 1237-
    1239, 1995.
    [29] D. G. Deppe, D. L. Huffaker, T. H. Oh, “Oxide confinement: A revolution
    in VCSEL technology”, Proc. Conf. Laser and Electro-Optics, CLEO’97, vol.
    11, pp. 193-193, 1997.
    [30] M. H. MacDougal, P. D. Dapkus, V. Pudikov, H. Zhao, and G. M. Yang,
    “Ultralow threshold current vertical-cavity surface-emitting lasers with
    AlAs-oxide-GaAs distributed Bragg reflectors,” IEEE Photon. Technol.
    Lett., vol. 7, pp. 229-231. 1995.
    [31] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K.
    M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers
    with 50% power conversion efficiency,” Electron. Lett., vol. 31, pp. 208-
    209, 1995.
    [32] R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K.
    J. Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs
    VCSELs,” Electron. Lett., vol. 33(4), pp. 330-331, 1997.
    [33] K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, Jr.,
    and K. M. Geib, “High-frequency modulation of oxide-confined vertical-
    cavity surface-emitting lasers,” Electron. Lett., vol. 32, pp. 457-458,
    1996.
    [34] H. J. Unold, M. Golling, R. Michalzik, D. Supper and K. J. Ebeling,
    “Photonic crystal surface-emitting lasers : Tailoring waveguiding for
    single-mode emission,” Proc. 27th Eur. Conf. on Opt. Comm. (ECOC’01
    Amsterdam), pp. 520-521, 2001.
    [35] D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, and Y.H. Lee, “Single-
    fundamental-mode photonic-crystal vertical-cavity surface-emitting
    lasers,” Appl. Phys. Lett., vol. 80,pp. 3901-3903.2002.
    [36] J. S. Harris Jr., “GaInNAs long-wavelength lasers : progress and
    challenges,” Semicon. Sci. Technol. vol.17, pp. 880-891, 2002.
    [37] A. S. Tanenbaum, “Computer Networks, 4th Edition.” © Prentice Hall,
    Upper Saddle River, NJ., 2003.

    下載圖示 校內:2008-06-29公開
    校外:2010-06-29公開
    QR CODE