| 研究生: |
洪家瑩 Hung, Jia-Ying |
|---|---|
| 論文名稱: |
腫瘤包覆現象中Fas ligand對於腫瘤細胞與纖維母細胞相互作用的角色 The role of Fas ligand in the cross-talk of tumor cells and fibroblasts during tumor encapsulation |
| 指導教授: |
楊倍昌
Yang, Bei-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | Fas Ligand 、纖維母細胞 、細胞侵襲 、共培養 |
| 外文關鍵詞: | Fas ligand, fibroblast, cell invasion, co-culture |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去的研究發現分布於腫瘤微環境中的基質細胞對於腫瘤的生長和癌症的進程扮演著很重要的角色。腫瘤間的基質主要是由腫瘤相關纖維母細胞所組成。腫瘤相關纖維母細胞能幫助營造促腫瘤生長的微環境,進而幫助腫瘤細胞的血管生成、侵襲以及轉移等等。Fas ligand (FasL)屬於腫瘤壞死因子家族的一員 (tumor necrosis factor, TNF family),表現於多種癌細胞。FasL能透過結合標的細胞膜上的Fas受體而誘發計畫性的的細胞凋亡(program cell death, apoptosis),藉此可調節免疫系統的平衡,甚至能促進癌細胞的發展進程。過去的研究發現FasL的表現量和癌細胞之惡性程度與轉移能力有相關性。在我們實驗室過去的研究中發現抑制FasL的表現量能促使腫瘤的形成且被包覆於類似纖維母細胞之細胞。因此,我們推測腫瘤的FasL表現可能會影響腫瘤生成結構進而導致腫瘤侵襲與轉移或躲避免疫系統的攻擊。為了探討FasL與癌細胞惡性程度的相關性,我們將各種不同惡性程度的癌細胞株與人類纖維母細胞共培養,結果發現良性的腫瘤細胞能被纖維母細胞所包圍住而形成壁壘分明的腫瘤細胞區塊,然而越惡性的細胞則較不被纖維母細胞包圍住反能穿越跨過纖維母細胞。接著我們利用FasL專一的核酶抑制FasL表現的U118與B16F10細胞,我們實驗結果顯示FasL低表現會使癌細胞較易被纖維母細胞包圍,而FasL高表現則會使癌細胞較易跨越纖維母細胞。另一方面,FasL高表現之癌細胞其培養液能吸引更多的纖維母細胞,且能誘導其活化。綜合以上結果,我們認為FasL能促進癌細胞的侵襲行為進而使得腫瘤細胞不被纖維母細胞包覆住並能影響腫瘤與纖維母細胞間的相互作用。
Stromal cells in the tumor microenvironment play an important role in cancer development. Cancer associated fibroblasts make up the bulk of cancer stroma and contribute to create a tumor-promoting microenvironment for cancer initiation, angiogenesis, invasion, and metastasis. Fas ligand (FasL), the conventional ligand of Fas, is widely expressed in a variety of cancers. Fas/FasL interaction induces signal for program cell death that not only regulates the homeostasis of immune system, but also participates in the progression of cancer. It was reported FasL expression correlates with malignancy and metastasis. Our previous studies showed that tumor nodules were encapsulated by fibroblast-like cells when FasL was knocked down. We hypothesize that the level of FasL expression in tumor cells can affect tumor nodule architecture and the interaction between tumor cells and fibroblasts leading to metastasis or immune evasion. To determine the correlation of FasL and tumor encapsulation by fibroblasts, we co-cultured various tumor cell lines with human primary fibroblasts. Tumor cells with low expression level of FasL could be well-encapsulated by fibroblasts while those with high expression level of FasL could not but cross over fibroblasts. To investigate the role of FasL in tumor-fibroblasts interaction, we down-regulated the FasL of U118 and B16F10 cell by FasL-ribozyme (FasL-RZ). Down-regulation of FasL had increased the percentage of tumor cells encircled by fibroblasts. We further performed invasion assay by using µ-dish culture-insert. We observed that FasL enhanced tumor cell invasion into a culture of fibroblasts. On the other hand, conditioned medium from FasLhigh tumor cells could attract more fibroblasts and induced fibroblasts activation. Collectively, FasL can induce tumor invasion, inhibit tumor encapsulated by fibroblasts, and avtivate fibroblasts.
Barnhart, B.C., Legembre, P., Pietras, E., Bubici, C., Franzoso, G., and Peter, M.E. (2004). CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. The EMBO journal 23, 3175-3185.
Barsky, S.H., Green, W.R., Grotendorst, G.R., and Liotta, L.A. (1984). Desmoplastic breast carcinoma as a source of human myofibroblasts. The American journal of pathology 115, 329-333.
Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A., and Duke, R.C. (1995). A role for CD95 ligand in preventing graft rejection. Nature 377, 630-632.
Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., and Moses, H.L. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848-851.
Castells, M., Thibault, B., Delord, J.P., and Couderc, B. (2012). Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. International journal of molecular sciences 13, 9545-9571.
Chen, H., Yang, W.W., Wen, Q.T., Xu, L., and Chen, M. (2009). TGF-beta induces fibroblast activation protein expression; fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM [corrected]. Experimental and molecular pathology 87, 189-194.
Chio, C.C., Wang, Y.S., Chen, Y.L., Lin, S.J., and Yang, B.C. (2001). Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. British journal of cancer 85, 1185-1192.
Chun, H.J., Zheng, L., Ahmad, M., Wang, J., Speirs, C.K., Siegel, R.M., Dale, J.K., Puck, J., Davis, J., Hall, C.G., et al. (2002). Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395-399.
Cui, H., Sherr, D.H., el-Khatib, M., Matsui, K., Panka, D.J., Marshak-Rothstein, A., and Ju, S.T. (1996). Regulation of T-cell death genes: selective inhibition of FasL- but not Fas-mediated function. Cellular immunology 167, 276-284.
Derycke, L.D., and Bracke, M.E. (2004). N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. The International journal of developmental biology 48, 463-476.
Desbarats, J., Birge, R.B., Mimouni-Rongy, M., Weinstein, D.E., Palerme, J.S., and Newell, M.K. (2003). Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nature cell biology 5, 118-125.
Dimanche-Boitrel, M.T., Vakaet, L., Jr., Pujuguet, P., Chauffert, B., Martin, M.S., Hammann, A., Van Roy, F., Mareel, M., and Martin, F. (1994). In vivo and in vitro invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. International journal of cancer Journal international du cancer 56, 512-521.
Dupont, P.J., and Warrens, A.N. (2007). Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 120, 133-139.
Gochuico, B.R., Miranda, K.M., Hessel, E.M., De Bie, J.J., Van Oosterhout, A.J., Cruikshank, W.W., and Fine, A. (1998). Airway epithelial Fas ligand expression: potential role in modulating bronchial inflammation. The American journal of physiology 274, L444-449.
Green, D.R., and Ferguson, T.A. (2001). The role of Fas ligand in immune privilege. Nature reviews Molecular cell biology 2, 917-924.
Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R., and Ferguson, T.A. (1995). Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189-1192.
Heneweer, M., Muusse, M., Dingemans, M., de Jong, P.C., van den Berg, M., and Sanderson, J.T. (2005). Co-culture of primary human mammary fibroblasts and MCF-7 cells as an in vitro breast cancer model. Toxicological sciences : an official journal of the Society of Toxicology 83, 257-263.
Hunt, J.S., Vassmer, D., Ferguson, T.A., and Miller, L. (1997). Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. Journal of immunology 158, 4122-4128.
Itoh, Y., and Nagase, H. (2002). Matrix metalloproteinases in cancer. Essays in biochemistry 38, 21-36.
Ju, S.T., Panka, D.J., Cui, H., Ettinger, R., el-Khatib, M., Sherr, D.H., Stanger, B.Z., and Marshak-Rothstein, A. (1995). Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444-448.
Kalluri, R., and Zeisberg, M. (2006). Fibroblasts in cancer. Nature reviews Cancer 6, 392-401.
Kayser, G., Schulte-Uentrop, L., Sienel, W., Werner, M., Fisch, P., Passlick, B., Zur Hausen, A., and Stremmel, C. (2012). Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung cancer 76, 445-451.
Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., and Peter, M.E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. The EMBO journal 14, 5579-5588.
Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J.W., Carey, L., Richardson, A., and Weinberg, R.A. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America 101, 4966-4971.
Lim, S.C. (2002). Expression of Fas ligand and sFas ligand in human gastric adenocarcinomas. Oncology reports 9, 103-107.
Lin, H.C. (2013). A novel signaling pathway for FasL: FasL hijacks Met receptor to enhance cell motility and Metastasis. National Cheng Kung University.
Liotta, L.A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C.M., and Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67-68.
Lynch, D.H., Watson, M.L., Alderson, M.R., Baum, P.R., Miller, R.E., Tough, T., Gibson, M., Davis-Smith, T., Smith, C.A., Hunter, K., et al. (1994). The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1, 131-136.
Mao, Y., Keller, E.T., Garfield, D.H., Shen, K., and Wang, J. (2013). Stromal cells in tumor microenvironment and breast cancer. Cancer metastasis reviews 32, 303-315.
Matsumoto, N., Imamura, R., and Suda, T. (2007). Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production. The FEBS journal 274, 2376-2384.
Mottolese, M., Buglioni, S., Bracalenti, C., Cardarelli, M.A., Ciabocco, L., Giannarelli, D., Botti, C., Natali, P.G., Concetti, A., and Venanzi, F.M. (2000). Prognostic relevance of altered Fas (CD95)-system in human breast cancer. International journal of cancer Journal international du cancer 89, 127-132.
Mueller, M.M., and Fusenig, N.E. (2004). Friends or foes - bipolar effects of the tumour stroma in cancer. Nature reviews Cancer 4, 839-849.
Muschen, M., Moers, C., Warskulat, U., Even, J., Niederacher, D., and Beckmann, M.W. (2000). CD95 ligand expression as a mechanism of immune escape in breast cancer. Immunology 99, 69-77.
Nagata, S., and Golstein, P. (1995). The Fas death factor. Science 267, 1449-1456.
Nelson, A.R., Fingleton, B., Rothenberg, M.L., and Matrisian, L.M. (2000). Matrix metalloproteinases: biologic activity and clinical implications. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 18, 1135-1149.
Nozoe, T., Yasuda, M., Honda, M., Inutsuka, S., and Korenaga, D. (2003). Fas ligand expression is correlated with metastasis in colorectal carcinoma. Oncology 65, 83-88.
O'Connell, J., Houston, A., Bennett, M.W., O'Sullivan, G.C., and Shanahan, F. (2001). Immune privilege or inflammation? Insights into the Fas ligand enigma. Nature medicine 7, 271-274.
Redondo, P., Solano, T., B, V.A., Bauza, A., and Idoate, M. (2002). Fas and Fas ligand: expression and soluble circulating levels in cutaneous malignant melanoma. The British journal of dermatology 147, 80-86.
Reimer, T., Herrnring, C., Koczan, D., Richter, D., Gerber, B., Kabelitz, D., Friese, K., and Thiesen, H.J. (2000). FasL:Fas ratio--a prognostic factor in breast carcinomas. Cancer research 60, 822-828.
Su, C.C. (2009). Alteration of T cell function in tumor microenvironment: non-apoptotic pathway of Fas signal favors Th-17 phenotype National Cheng Kung University.
Su, C.C., Lin, Y.P., Cheng, Y.J., Huang, J.Y., Chuang, W.J., Shan, Y.S., and Yang, B.C. (2007). Phosphatidylinositol 3-kinase/Akt activation by integrin-tumor matrix interaction suppresses Fas-mediated apoptosis in T cells. Journal of immunology 179, 4589-4597.
Sutoh Yoneyama, M., Hatakeyama, S., Habuchi, T., Inoue, T., Nakamura, T., Funyu, T., Wiche, G., Ohyama, C., and Tsuboi, S. (2014). Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. European journal of cell biology 93, 157-169.
Suyama, K., Shapiro, I., Guttman, M., and Hazan, R.B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer cell 2, 301-314.
Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., and Nagata, S. (1994). Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969-976.
Verbeke, C.S., Wenthe, U., Grobholz, R., and Zentgraf, H. (2001). Fas ligand expression in Hodgkin lymphoma. The American journal of surgical pathology 25, 388-394.
Volk, T., and Geiger, B. (1984). A 135-kd membrane protein of intercellular adherens junctions. The EMBO journal 3, 2249-2260.
Wald, O., Izhar, U., Amir, G., Avniel, S., Bar-Shavit, Y., Wald, H., Weiss, I.D., Galun, E., and Peled, A. (2006). CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. Journal of immunology 177, 6983-6990.
Wei, J., Xu, G., Wu, M., Zhang, Y., Li, Q., Liu, P., Zhu, T., Song, A., Zhao, L., Han, Z., et al. (2008). Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer research 28, 327-334.
Wu, Y.C. (2005). Fas ligand expression alters tumor metastasis in B16F10 cells. National Cheng Kung University.
Yang, B.C., Lin, H.K., Hor, W.S., Hwang, J.Y., Lin, Y.P., Liu, M.Y., and Wang, Y.J. (2003). Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by Fas signaling through a protein kinase A-independent pathway. Journal of immunology 171, 3947-3954.
Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis 21, 497-503.
Zhao, Y., Yan, Q., Long, X., Chen, X., and Wang, Y. (2008). Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell biochemistry and function 26, 571-577.
Zuliani, C., Kleber, S., Klussmann, S., Wenger, T., Kenzelmann, M., Schreglmann, N., Martinez, A., del Rio, J.A., Soriano, E., Vodrazka, P., et al. (2006). Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell death and differentiation 13, 31-40.
校內:2020-02-16公開