簡易檢索 / 詳目顯示

研究生: 黃于豪
Huang, Yu-Hao
論文名稱: 建置均勻氣壓式微奈米壓印平台和壓印金屬圖案應用於表面電漿子之研究
Buildup a micro/nano imprint platform with conformable gas press and nanoimprint metallic patterns for surface plasmonic application
指導教授: 林俊宏
Lin, Chun-hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 108
中文關鍵詞: 聚二甲基矽氧烷倒金字塔奈米壓印
外文關鍵詞: PDMS, Inverse-pyramid, Nanoimprint
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,主要研究奈米壓印微影技術,包括熱壓式奈米壓印、紫外光硬化奈米壓印和軟微影。藉由物理的方式成型,必須在模具和基板之間緊密的接觸。要得到不錯的均勻圖形,一個均勻作用力覆蓋在整個壓印的區域是必要的。因此,建置氣壓式微奈米壓印平台,能提供更均勻的壓力,配合h-/184 PDMS雙層結構低表面能且複製能力高的特性,提高脫模的效率。
    研究中發現當線寬尺寸小於1 um時,184 PDMS的複製能力會漸漸變差,為了得到不錯的圖形保真度,必須改用楊氏模量較高的h-PDMS來進行複製,而因為單層h-PDMS容易碎裂,所以改以h-/184 PDMS雙層結構來複製。當壓力大於3 bar和溫度大於130℃,會產生無殘餘層的結果。在我們壓印機台中使用h-/184 PDMS軟模具,其壓印的壓力是很小的。
    此外,直接壓印金屬奈米壓印是更進一步的發展,應用在製作金屬金字塔陣列。在母模的製作中,透過KOH對矽基板特定晶格面蝕刻的特性,成型出矽基板倒金字塔陣列,接著藉助紫外光奈米壓印微影,進而製作出h-/184 PDMS的倒金字塔陣列。藉著直接壓印金屬奈米粒子可成功得到週期2 um和邊長1 um金的金字塔陣列。

    In the thesis, nanoimprint lithography was mainly investigated, including hot embossing nanoimprint lithography, ultraviolet cured nanoimprint lithography and soft lithogtraphy. In nanoimprint lithography, resist patterns are created by physically deforming the resist material with a mold. Therefore, it requires an intimate contact between the mold and substrate. An uniformly applied force over the entire imprint region is necessary to have good pattern uniformity. Thus, we built up a micro/nano imprint platform with conformable gas press. It can provide more uniform imprint pressure. Meanwhile, using h-/184 PDMS composite stamp with low surface energy provides good capability of replication and promotes an efficient demolding.
    In our study, it was found that the replicating capability of 184 PDMS become poor when the dimension of the line pattern is smaller than 1 um. To have good pattern fidelity, the h-PDMS, which has higher modulus, was employed as the imprint stamp. To overcome the cracking problem of h-PDMS when releasing from the master, a bilayer scheme, h-/184 PDMS composite, was utilized as our imprint stamp. There is almost no residual layer, when imprinting pressure is above 3 bar and embossing temperature is above 130℃. The imprinting pressure is relatively small when using bilayer h-/184 PDMS stamp in our imprint machine with a conformable gas press.
    Moreover, direct nanoimprinting of metallic nanoparticles was further developed and then applied to fabricate metallic pyramid array. In the master mold fabrication, the inverse-pyramid hole arrays were formed by the <111>crystalline planes of the (100) silicon wafer using anisotropic KOH wet etching of silicon. After stamp replication processes with ultraviolet nanoimprint lithography, the inverse-pyramid hole arrays of h-/184 PDMS composite stamp were finally fabricated. By using direct nanoimprinting of metallic nanoparticles with the h-/184 PDMS composite stamp, the gold pyramid array with a period of 2 um and pyramidal edge length of 1 um have been fabricated.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XV 第一章 序論 1 1.1前言 1 1.2論文架構 3 第二章 奈米壓印微影 4 2.1文獻回顧 4 2.1.1熱壓式奈米壓印 5 2.1.2紫外光硬化奈米壓印 6 2.1.3軟微影 7 2.1.4電子束鄰近效應 12 2.2微奈米壓印平台 13 2.2.1研究動機與目的 13 2.2.2 機台架構 16 2.3壓印參數最優化 18 2.3.1研究動機與目的 18 3.3.2 184 PDMS與h-/184 PDMS Stamp的差異性 18 2.3.3實驗材料與製備 22 2.3.4參數測定 26 2.3.4.1壓力的大小與持溫的溫度高低的影響 28 2.3.4.2持壓持溫時間的影響 36 2.3.4.3冷卻溫度的影響 37 2.3.5結論 38 第三章 金屬金字塔陣列與表面電漿子 39 3.1文獻回顧 39 3.1.1表面電漿子簡介 40 3.1.2表面電漿子特性 41 3.1.3孔洞陣列中的異常穿透現象 44 3.1.4表面電漿色散關係式公式推導 46 3.2金屬金字塔陣列之製作 51 3.2.1研究動機與目的 51 3.2.2矽模具的倒金字塔陣列 53 3.2.3 h-/184 PDMS的倒金字塔結構 64 3.2.4 壓印奈米金溶液 74 3.2.5結論 81 第四章 實驗總結與未來展望 82 4.1實驗總結 82 4.2未來展望 84 參考文獻 87

    1. http://en.wikipedia.org/wiki/Moore%27s_Law#Reference_and_notes
    2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays” Nature 391, 667-669 (1998).
    3. D. A. Schultz, “Plasmon resonant particles for biological detection” Current Opinion in Biotechnology 14,13-22 (2003).
    4. M. Moskovits, “Surface-enganced spectroscopy” Rev. Mod. Phys. Vol. 57, No. 3, 783-826 (1985).
    5. http://www.itrs.net/Links/2007ITRS/Home2007.htm
    6. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography” J. Vac. Sci. Technol. B 14(6), 4129-4133 (1996).
    7. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution” Science Vol. 272, no. 5258, 85-87 (1996).
    8. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of Nanostructures using a UV-based imprint technique” Microelectronic Engineering 53, 233-236 (2000).
    9. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz, “Characterization and application of a UV-based imprint technique” Microelectronic Engineering 57-58, 361-366 (2001).
    10. Y. Xia and G. M. Whitesides, “SOFT LITHOGRAPHY” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    11. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps” Langmuir, Vol. 18, No. 13, 5314-5320 (2002).
    12. H. Schmid and B. Michel, “Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography” Macromolecules Vol. 33, No. 8, 3042-3049 (2000).
    13. T. Burgin, V. E. Choong, and G. Maracas, “Large Area Submicrometer Contact Printing Using a Contact Aligner” Langmuir, Vol. 16, No. 12, 5371-5375 (2000).
    14. C. H. Lin, S. D. Tzu, and A. Yen, “Optical Proximity Correction by E-Beam Over-Correction” Microelectronic Engineering 46 55-58 (1999).
    15. J. H. Chang, S. Y. Yang, “Gas pressurized hot embossing for transcription of micro-features” Microsystem Technologies Vol. 10, No. 1, 76-80 (2003).
    16. J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, J. Y. Yang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces” J. Vac. Sci. Technol. A 23(6), 1687-1690 (2005).
    17. F. S. Cheng, S. Y. Yang, S. C. Nian, L. A. Wang, “Soft mold and gasbag pressure mechanism for patterning submicron patterns onto a large concave substrate” J. Vac. Sci. Technol. B 24(4), 1724-1727 (2006).
    18. H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, “Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field” Nano Lett., Vol. 6, No. 11, 2438-2441 (2006).
    19. H. C. Scheer, N. Bogdanski, M. Wissen, and S. Möllenbeck, “Impact of glass temperature for thermal nanoimprint” J. Vac. Sci. Technol. B 25(6), 2392-2395 (2007).
    20. C. Genet, T. W. Ebbesen, “Light in tiny holes” Nature 445, 39-46 (2007).
    21. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications” Faraday Discuss. 132, 9-26 (2006).
    22. G. A. Baker, D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis” Anal. Bioanal. Chem. 382, 1751-1770 (2005).
    23. Y. Xia and N. J. Halas, “Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures” N. J. MRS Bull. 30, 338-348 (2005).
    24. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics” Nature (London) 424, 824-830 (2003).
    25. k. Kneipp, H. Kneipp, and J. Kneipp, “Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold NanoaggregatessFrom Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells” J. Acc. Chem. Res. 39, 443-450 (2006).
    26. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic Crescent Moon Structures with Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field Enhancement Effect” Nano Lett. Vol. 5, No. 1, 119-124 (2005).
    27. S. Chattopadhyay, L. C. Chen, K. H. Chen, “Nanotips: Growth, Model, and Applications” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
    28. H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule” Phys. ReV. B 69, 155418 (2004).
    29. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy” Phys. Rev. Lett. 92, 096101 (2004).
    30. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters” Nano Lett. Vol. 2, No. 8, 891-894 (2002).
    31. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced Symmetry Metallodielectric Nanoparticles: Chemical Synthesis and Plasmonic Properties” J. Phys. Chem. B 107, 7327-7333 (2003).
    32. R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation” Nature 425, 487-490 (2003).
    33. M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, “Periodically structured metallic substrates for SERS” Sensors and Actuators B 51, 285–291 (1998).
    34. B. Cui, L. Clime, K. Li and T. Veres, “Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy” Nanotechnology 19, 145302 (2008).
    35. J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-Area Nanoscale Patterning: Chemistry Meets Fabrication” Acc. Chem. Res. 39, 249-257 (2006).
    36. J. Henzie, E. Kwak, and T. W. Odom, “Mesoscale Metallic Pyramids with Nanoscale Tips” Nano Lett. 5, 1199-1202 (2005).
    37. J. Henzie, K. L. Shuford, E. Kwak, G. C. Schatz, and T. W. Odom, “Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays” J. Phys. Chem. B 110, 14028-14031 (2006).
    38. A. L. Giermann and C. V. Thompson, “Solid-state dewetting for ordered arrays of crystallographically oriented metal particles” Appl. Phys. Lett. 86, 121903 (2005).
    39. S. G. Jang, H. K. Yu, D. G. Choi, and S. M. Yang, “Controlled Fabrication of Hollow Metal Pillar Arrays Using Colloidal Masks” Chem. Mater. 18, 6103-6105 (2006).
    40. P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler, “Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy” J. Am. Chem. Soc. 112, 9554-9555 (2000).
    41. S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg and P. Bartlett, “Tuning plasmons on nano-structured substrates for NIR-SERS” Phys. Chem. Chem. Phys. 9, 104–109 (2007).
    42. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum” Phil. Mag. 4, 396-397 (1902).
    43. U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves)” J. Opt. Soc. Am. 31, 213-222 (1941).
    44. D. Pines and D. Bohm, “A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of Interactions” Phvs. Rev. 85, 338-353 (1952).
    45. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Film” Phys. Rev. 106, 874-881(1957).
    46. C. J. Powell, J. B. Swan, “Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium” Phy. Rev. 118, 640-643 (1960).
    47. Y. Teng, E. A. Stern, “PLASMA RADIATION FROM METAL GRATING SURFACES” Phy. Rev. Lett. 19, 511-514 (1967).
    48. E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light” Naturforsch. A 23, 2135-2136 (1968).
    49. A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection” Z. Phys. 216, 398-410 (1968).
    50. A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection” Phys. 216, 398-410 (1968).
    51. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons” Phys. Rev. Lett. 77, 1889-1892 (1996).
    52. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields” Appl. Phys. Lett. 80, 404-406 (2002).
    53. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “SURFACE-PLASMON RESONANCE EFFECT IN GRATING DIFFRACTION” Phys. Rev. Lett. 21, 1530-1533 (1968).
    54. H. Raether, Surface Plasmons, Spring, Berlin (1988).
    55. H. Yoshihiko, U. Toshihiko, K. Tomohiro and M. Takashi, “Fine gold grating fabrication on glass plate by imprint lithography” Proc. SPIE, Vol. 5220, 74-81 (2003).
    56. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure” Microelectron. Eng. 83, 893-896 (2006).
    57. S. H. Ko, I. Park, H. Pan, C. Grigoropoulos, A. P. Pisano, C. K. Luscombe, J. M. J. Fréchet, “Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication” Nano Lett. Vol. 7, No. 7, 1869-1877 (2007).
    58. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography” Microelectronic Engineering 61-62, 441-448 (2002).
    59. T. T. Truong, R. S. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, “Soft Lithography Using Acryloxy Perfluoropolyether Composite” Langmuir 23, 2898-2905 (2007).

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE