簡易檢索 / 詳目顯示

研究生: 胡延慶
Hu, Yen-Ching
論文名稱: 結晶矽太陽能電池電性與材料分析研究
Electrical Characterization and Material Analysis for Crystalline Silicon Solar Cells
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 73
中文關鍵詞: 轉換效率結晶矽太陽能電池選擇性蝕刻
外文關鍵詞: Crystalline silicon solar cell, Efficiency, Preferential etching
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能電池的應用迄今,已超過五十年。近年來,太陽能電池大量運用在陸地的商業用途。因為矽半導體的發展相當成熟,所以多數商業化的太陽能電池仍以結晶矽為主。結晶矽太陽能電池的轉換效率會受到諸如差排、氧、碳與過渡金屬等材料缺陷與雜質的影響。其中,氧是最主要的有害雜質元素之一,在長晶或太陽能電池的製程中,過飽和的氧會在矽晶片中形成熱施主,新施主和氧沉澱等,而這些缺陷會降低矽晶片的少數載子壽命。

    鑑別這些會影響材料少數載子壽命的缺陷,是研究結晶矽材料的首要目標。本論文採用選擇性蝕刻結合光學顯微鏡(OM)以及掃瞄式電子顯微鏡(SEM),研究了結晶矽太陽能電池中的缺陷形態及密度分佈。利用光致電流量測儀(LBIC)、量子效率量測儀(QE)、能量散射光譜儀(EDS)以及電子微探分析儀(EPMA)等儀器,對結晶矽太陽能電池的雜質、缺陷以及少數載子壽命的分佈特性進行系統化的研究。

    Solar cells have been used for over five decades. Recently, they were applied to terrestrial systems, and commercial and building applications. Most of the commercial solar cells are made of silicon semiconductor, which is mature technology for years. The efficiency of a crystalline silicon solar cell is limited by a high density of defects and a high concentration of impurities,such as dislocations;carbon;oxygen and transition metals. As one of the main and detrimental impurities, the supersaturation of oxygen may form thermal donors, new donors, precipitates during the crystal growth or the cell fabrication processes that can lower the minority carrier lifetime in the silicon substrate.

    The primary objective of material research in crystalline silicon is the identification of the lifetime-limiting defects. In this thesis,the defects in crystalline silicon solar cell are observed by both OM combined with preferential etching and SEM. The properties of impurities and defects in the crystalline silicon solar cell as well as their impacts on the minority carrier lifetime are systematically studied by means of LBIC measurement, QE measurement, EDS and EPMA.

    摘要...............................................Ⅰ Abstract...........................................Ⅱ 誌謝...............................................Ⅲ 目錄...............................................Ⅳ 表目錄.............................................Ⅶ 圖目錄.............................................Ⅷ 第一章 緒論.........................................1 1.1 前言............................................1 1.2 研究背景與動機..................................2 第二章 太陽能電池概述與文獻回顧.....................5 2.1 太陽能電池介紹..................................5 2.2 結晶矽太陽能電池原理...........................11 2.2.1 基本結構與發電原理...........................11 2.2.2 電路與電性量測...............................13 2.2.3 結晶矽太陽能電池製造方式.....................15 2.3 文獻探討.......................................17 2.3.1 矽晶材料對太陽能電池的影響...................17 2.3.2 選擇性蝕刻法應用於材料分析...................20 第三章 實驗方法與步驟..............................23 3.1 實驗流程.......................................23 3.2 實驗樣本規格與電性量測.........................23 3.2.1 LBIC量測設備................................26 3.2.2 量子效率量測設備.............................30 3.2.3 電流-電壓量測設備............................33 3.3 太陽能電池表面膜層去除與缺陷蝕刻...............35 3.3.1 太陽能電池表面膜層去除.......................35 3.3.2 矽晶片清洗...................................35 3.3.3 矽晶片缺陷蝕刻...............................36 3.4 型貌觀察與成份分析.............................37 3.4.1 光學顯微鏡...................................37 3.4.2 掃瞄式電子顯微鏡與能量散射光譜儀.............39 3.4.3 紫外光與可見光光譜儀.........................41 3.4.4 高解析度場發射電子微探儀.....................42 第四章 結果與討論..................................45 4.1 單晶矽太陽能電池的缺陷分析.....................45 4.1.1 實驗結果.....................................45 4.1.2 單晶矽中雜質的來源與改善.....................53 4.1.3 長晶改善效果確認.............................56 4.2 多晶矽太陽能電池的缺陷分析.....................57 4.2.1 實驗結果.....................................57 4.2.2 多晶矽中雜質的來源與改善.....................65 4.2.3 長晶改善效果確認.............................66 第五章 結論與未來展望..............................68 5.1 結論...........................................68 5.2 未來展望.......................................69 參考文獻...........................................70

    [1] D. Yang, L. Li and X. Ma, “Oxygen-related centers in multicrystalline silicon,” Solar Energy Materials and Solar Cells., Vol.62, pp.37-42, 2000.
    [2] P. Capper, A. W. Jones, E. J. Wallhouse and J. G. Wilkes, “The effects of heat treatment on dislocation-free oxygen-containing silicon crystals,” Applied Physics., Vol.48, pp.1646-1655, 1977.
    [3] F. G. Kirscht, Y. Furukawa, W. Seifert, K. Schmalz, A. Buczkowski, S. B. Kim, H. Abe, H. Koya and J. Bailey, “Electrical characteristics of oxygen precipitation related defects in Czochralski silicon wafers,” Materials Science and Engineering B., Vol.36, pp. 230-236, 1996.
    [4] B. Leroy and C. Plougonven, “Warpage of silicon wafers,” Electro- chemical Society., Vol.127, pp. 961-967, 1980.
    [5] H. Shimizu, T. Watanabe and Y. Kakui “Warpage of Czochralski grown silicon wafers as affected by oxygen precipitation,” Japanese Journal of Applied Physics., Vol.24, pp. 815-821, 1985.
    [6] D. Yang and H. J. Moeller, “Effect of heat treatment on carbon in multicrystalline silicon,” Solar Energy Materials and Sola Cells.,Vol.72, pp.54 1-549, 2002.
    [7] A. A. Istratov, T. Buonassisi and R. J. McDonald, “Transition metals in photovoltaic grade ingot cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material content of multiicrystalline silicon for solar cells and its impact on minority carrier difusion length,” Crystal Growth.,Vol.287, pp.402-407, 2006.
    [8] J. Chen, T. Sekiguchi and S. Nara,“Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon,” Scripta Materialia.,Vol.52, pp.1211-1215, 2005.
    [9] W. C. Dash,“Dislocations and mechanical properties of crystals,” Applied Physics.,Vol.27, pp.1193-1195, 1956.
    [10] E. Sirtl and A. Adler, “Chromic acid-hydrofluoric acid as specific reagents for the development of etching pits in silicon,” Z. Metallkd.,Vol.52, pp.529-534, 1961.
    [11] D. F. Secco, “Dislocation etch for (100) planes in silicon,” Electrochemical Society.,Vol.119, pp.948-951, 1972.
    [12] M. W. Jenkins, “A new preferential etch for defects in silicon crystals,”Electrochemical Society., Vol.124, pp. 757-762, 1977.
    [13] D. G. Schimmel, “Defect etch for <100> silicon evaluation,”Electrochemical Society., Vol.126, pp. 479-483, 1979.
    [14] H. Robbins and B. Schwartz, “Chemical etching of silicon Ⅱ.The system HF,HNO3,H2O and HC2H3O2,”Electrochemical Society., Vol.107, pp. 108-111, 1960.
    [15] H. Robbins and B. Schwartz, “Chemical etching of silicon III. A temperature study in the acid system,”Electrochemical Society., Vol.108, pp. 365-372, 1961.
    [16] K. V. Ravi, B. O'Mara and C.William,“Electronic and optical properties of polycrystalline or impure semiconductors, and novel silicon growth methods, ” The Electrochemical Society Softbound Proceedings Series., Pennington, NJ , p.242,1980.
    [17] H. Younan, “Studies of a new chemical etching method - 152 secco etch in failure analysis of wafer fabrication,” Proceedings of ICSE’98., pp.20-26, 1998.
    [18] B.L. Sopori,“Reflection characteristics of textured polycrystalline silicon substrates for solar cells,” Solar Cells., Vol.25, pp.15-26, 1988.
    [19] A.A. Istratov, H. Hieslmaira, O.F. Vyvenkoa, E.R. Weberb and R. Schindlerc,“Defect recognition and impurity detection techniques in crystalline silicon for solar cells,” Solar Energy Materials and Solar Cells., Vol.72, pp.441-451, 2002.
    [20] H. Kasai and H. Matsumura,“Study for improvement of solar cell efficiency by impurity photovoltaic effect,” Solar Energy Materials and Solar Cells., Vol.48, pp.93-100, 1997.
    [21] N. Khedhera, A. Ben Jaballaha, M. Hassena, M. Hajjia, H. Ezzaouiaa, B. Bessasa, A. Selmib and R. Bennaceur,“Gettering by heat thermal processing: application in crystalline silicon solar cells,” Materials Science in Semiconductor Processing., Vol.7, pp.493-442, 2004.

    無法下載圖示 校內:2024-07-23公開
    校外:2039-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE