簡易檢索 / 詳目顯示

研究生: 賴俊文
Lai, Chun-Wen
論文名稱: 矽/碳/矽奈米多層膜的製造與性質之研究
A study on the fabrication and characterization of Si/C/Si nano multi-layer films
指導教授: 鍾震桂
Chung, Chen-Kuei
陳元方
Chen, Terry Yuan-Fang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 奈米多層膜光電性質
外文關鍵詞: nano multilayer, carbon, silicon, optoelectronic property
相關次數: 點閱:149下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般多層複合材料當薄膜厚度在奈米尺寸時,會有優異的光電性質。在近年來發展多層膜材料系統應用於光電元件的研究日趨重要,因此對於螢光激發光(Photoluminescence)在多層複合膜行為的探討是必要的。而我們可藉由分析材料表面、內部及介面的結構變化去探討發光的特性及機制。由文獻可知,碳與矽是兩種常被用來分析的半導體材料,而碳化矽薄膜或奈米顆粒可由碳和矽膜經熱退火反應完成,且文獻報導矽的存在可以改善碳的穩定性和附著力,因此本論文採用超高真空物理氣相沉積法進行矽/碳/矽多層奈米複合薄膜的成長與光電性質檢測研究,探討製程及多層膜材料結構以及碳化矽奈米顆粒對於發光性質之效果,進而找出最佳化複合薄膜製程參數組合,以及進行不同最佳製程參數組合製造多層奈米複合膜於光電元件發光特性分析。從實驗結果發現,退火後的兩層矽/碳複合膜經雷射激發後產生了白光,此現象經過一系列的材料分析結果推論可能的原因為退火後的兩層矽/碳複合膜產生了多種奈米結構包含了碳化矽奈米顆粒 (np-SiC),矽奈米晶粒 (nc-Si),碳化矽奈米晶粒 (nc-Si)以及碳膜中較多的sp2團簇形成所致。由於四種不同的結構其能隙皆不相同導致電子電洞對在複合時產生耦合的效果並強化了放光的強度。由光激發螢光光譜可發現,所形成的寬廣PL波峰可以經過高斯擬合出四個不同位置的波依序為藍光 (~420 nm), 綠光 (~490 nm), 綠-黃光 (550 nm) and 橘光 (~650 nm) 的放射,經過文獻比較可以發現此四個波即為上述之四種結構所產生。此外於熱穩定性的分析發現,上層的矽膜有助於類鑽碳膜的機械性質穩定,其硬度經過退火後的平均值約為18.72 GPa,此原因可能是高溫退火後所形成的碳化矽補強其機械性質。於三層矽/碳/矽結構中,發現此結構有助於於相對低溫的退火處理形成結晶的碳化矽奈米顆粒,此外三層結構相對於兩層結構的矽/碳多層膜有較強的光激發螢光行為其推論為較多的奈米複合結構形成所致。

    Nano multi-layer films generally have the advantages of superior photoluminescence (PL) behavior. Multilayer material systems are increasing important in the development of smaller, faster and more efficient electronic and optoelectronic devices. Carbon and silicon are two common semiconductor materials. In addition, The SiC film or nanoparticles can be formed using thermal annealing of C and Si films and the existence of Si is beneficial for the C stability and adhesion. In this thesis, we establish the technologies of nano multi-layer films fabrication and property characterization in the single, two and three layers. We perform the basic measurement of optoelectronic behaviors by PL instruments including the composition, phase, microstructure, chemical bonding, morphology and PL spectra. Afterwards, we study the thermal stability and do the optimization of process parameters for future different application and establish the relationship between the layer thickness and number, microstructure, composition and optoelectronic properties. We also study the mechanism of PL principles in the nano multi-layer films as well as thermal stability at high temperatures.
    From the experiment results, two-layer Si/C films showed the white PL behavior due to the synthesis of nanocomposite consisting of np-SiC, nc-Si, nc-SiC and sp2 carbon clusters from the rapid thermal annealing of double layer Si/C films on Si (100). The broad visible band can be deconvoluted into four Gaussian-fitted bands of blue (~420 nm), green (~490 nm), green-yellow (550 nm) and orange (~650 nm) emission, respectively, corresponding to the emission from nc-SiC, sp2-carbon clusters, np-SiC and nc-Si. In addition, The Si/C films showed the good thermal stability with the average hardness of 18.72 GPa during elevated annealing temperature through the effectively SiC formation. From the three-layer Si/C/Si films, the synthesis of crystalline np-SiC at a lower temperature of 750 °C has been successfully demonstrated using ultra-high-vacuum ion beam sputtering and RTA. Finally, we study the mechanism and efficiency of the advanced optoelectronic properties of the nano multi-layer films as well as using the optimized conditions for the application of EL devices, which will be directly applied to the product fabrication.

    Table of Contents 摘 要 I Abstract II 致 謝 IV Table of Contents V List of Tables VIII List of Figure IX Chapter 1 Introduction 1 1.1 Background of the research 1 1.2 Objects of the research 2 1.3 Outline of this thesis 3 Chapter 2 Literature Review 5 2.1 Si nanocrystal (nc-Si) 5 2.2 Diamond-like carbon (DLC) 6 2.2.1 Optical property of DLC 6 2.2.2 Mechanical property of DLC 7 2.3 Silicon carbide (SiC) 8 2.3.1 Formation of nanoscale SiC 8 2.3.2 PL of SiC 9 Chapter 3 Experiment Procedure and Analysis Technique 11 3.1 PVD coating technology 11 3.2 Deposition of C, Si/C, C/Si and Si/C/Si films 12 3.3 Analysis instruments 13 3.3.1 Field emission scanning electron microscopy 13 3.3.2 Raman spectroscopy 14 3.3.3 Transmission electron microscopy 14 3.3.4 Fourier transform infrared spectroscopy 15 3.3.5 Photoluminescence spectroscopy 15 3.3.6 Nanoindenter 16 Chapter 4 The Characteristic of C/Si and Si/C Two-Layer Deposited on Si (100) Substrate 23 4.1 Effect of underlying silicon layer on the microstructure and photoluminescence of the rapid-thermal-annealed C/Si nanofilm 23 4.1.1 Bonding behavior of C/Si films 24 4.1.2 PL behavior of C/Si films 26 4.1.3 Origin of PL 27 4.1.4 Summary 28 4.2 Effect of top silicon layer on the microstructure and photoluminescence of the rapid-thermal-annealed C/Si nanofilm 29 4.2.1 Bonding behavior of C/Si films 30 4.2.2 Morphology of Si/C films 31 4.2.3 PL behavior of C/Si films 33 4.2.4 Summary 35 4.3 Enhancement of thermal stability on DLC nanofilm by using addition of silicon top-layer 36 4.3.1 Bonding behavior of Si/C films 36 4.3.2 Morphology of Si/C films 39 4.3.3 Nanomechanical property of Si/C films 40 4.3.4 Summary 41 Chapter 5 The Characteristic of Si/C/Si Three-Layer deposited on Si (100) Substrate 57 5.1 Raman inspection for the annealing induced evolution of sp2 and sp3 bonding behavior in sandwiched Si/C/Si multilayer 57 5.1.1 Morphology of Si/C/Si films 57 5.1.2 Bonding behavior of Si/C/Si films 57 5.1.3 AES depth profile of Si/C/Si films 60 5.1.4 Reaction between C and Si layer 60 5.1.5 Summary 61 5.2 Low-temperature formation of nanocrystalline SiC from three-layer Si/C/Si film and its white photoluminescence property 62 5.2.1 Morphology of Si/C/Si films 62 5.2.2 Bonding behavior of Si/C/Si films 63 5.2.3 Structure variation of Si/C/Si films under RTA 64 5.2.4 PL behavior of Si/C/Si films 66 5.2.5 Nanomechanical property of Si/C/Si films 68 5.2.6 Summary 68 Chapter 6 Conclusions and Future Works 81 6.1 Conclusions 81 6.2 Future Works 82 References 85 Publications 98 Vita 100

    References
    1 J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 125, pp. 322-330, 2000.
    2 P. Holubar, M. Jilek, and M. Sima, “Present and possible future applications of superhard nanocomposite coatings”, Surface and Coatings Technology, Vol.133-134, pp. 145-151, 2000.
    3 F. Vaz, and L. Rebouta, “Superhard nanocomposite Ti-Si-N coatings”, Materials Science Forum, Vol. 383, pp. 143-149, 2002.
    4 R. A. Andrievski, “Films as nanostructured materials with characteristic mechanical properties”, Materials Transactions, Vol. 42, pp. 1471-1473, 2001.
    5 S. Veprek and S Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, Vol. 268, pp. 64-71, 1995.
    6 S. Veprek and A. S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology, Vol. 146-147, pp. 175-182, 2001.
    7 V. Provenzano and R. L. Holtz, “Nanocomposites for high temperature applications”, Materials Science and Engineering A, Vol. 204, pp. 125-134, 1995.
    8 L. Maya, W. R. Allen, A. L. Glover and J. C. Mabon, “Gold nanocomposites”, Journal of Vacuum Science and Technology B, Vol.13, pp. 361-365, 1995.
    9 A. I. Gusev, “Effect of the nanocrystalline state in solids”, Physics- Uspekhi, Vol. 41, pp. 49-76, 1998.
    10 T. Onishi, E. Iwamura, K. Takgi and K. Yoshikawa, “Influence of adding transition metal elements to an aluminum target on electrical resistivity and hillock resistance in sputter-deposited aluminum alloy thin films”, Journal of Vacuum Science and Technology A, Vol. 14, pp. 2728-2735, 1996.
    11 F. Mazaleyrat and L. K. Varga, “Ferromagnetic nanocomposites”, Journal of Magnetism and Magnetic Materials, Vol. 215-216, pp. 253-259, 2000.
    12 B. Cantor, C. M. Allen, R. Dunin-Burkowski, M. H. Green, J. L. Hutchinson, K. A. Q. O’Reilly, A. K. Petford-Long, P. Schumacher, J. Sloan and P. J. Warren, “Applications of nanocomposites”, Scripta Materialia, Vol. 44, pp. 2055-2059, 2001.
    13 R. A. Andrievski and A. M. Gleze, “Size effects in properties of nanomaterials”, Scripta Materialia, Vol. 44, pp. 1621-1624, 2001.
    14 J. Musil, P. Karvankova and J. Kasl, “Hard and superhard Zr-Ni-N nanocomposite films”, Surface and Coatings Technology, Vol. 139, pp. 101-109, 2001.
    15 A. A. Voevodin, J. P. O'Neill, and J. S. Zabinski, “Nanocomposite tribological coatings for aerospace applications”, Surface and Coatings Technology, Vol. 116-119, pp. 36-45, 1999.
    16 S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. -D. Männling, P. Nesladek, G. Dollinger and A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa”, Surface and Coatings Technology, Vol. 133-134, pp. 152-159, 2000.
    17 L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Applied Physics Letters, Vol. 57, p. 1046, 1990.
    18 A. O. Konstantinov, A. Henry, C. I. Harris and E. Janzen, “Photoluminescence studies of porous silicon carbide”, Applied Physics Letters, Vol. 66, p. 2250, 1995.
    19 X. L. Wu, G. G. Siu, M. J. Stokes, D. L. Fan, Y. Gu and X. M. Bao, “Blue-emitting β-SiC fabricated by annealing C60 coupled on porous silicon”, Applied Physics Letters, Vol. 77, p. 1292, 2000.
    20 L. S. Liao, X. M. Bao, Z. F. Yang and N. B. Min, “Intense blue emission from porous β-SiC formed on C+-implanted silicon”, Applied Physics Letters, Vol. 66, p. 2382, 1995.
    21 W. A. Nevin, H. Yamagishi, M. Yamaguchi and Y. Tawada, “Emission of blue light from hydrogenated amorphous silicon carbide”, Nature, Vol. 368, pp. 529-531, 1994.
    22 S. Kalem, “Optical investigation of a-Si:H/a-SiNx:H superlattices”, Physical Review B, Vol. 37, pp. 8837-8841, 1988.
    23 T. Tiedje and B. Abeles, “Charge transfer doping in amorphous semiconductor superlattices”, Applied Physics Letters, Vol. 45, p. 179, 1984.
    24 J. Kakalios and H. Fritzsche, “Persistent Photoconductivity in Doping-Modulated Amorphous Semiconductors”, Physical Review Letters, Vol. 53, pp.1602-1605, 1984.
    25 A. Pe´rez-Rodrı´guez, O. Gonza´lez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada and A. Claverie, “White luminescence from Si+ and C+ ion-implanted SiO2 films”, Journal of Applied Physics, Vol. 94, p. 254, 2003.
    26 P. Pellegrino, A. Pe´rez-Rodriguez, B. Garrido, O. Gonza´lez-Varona, J. R. Morante, S. Marcinkevicius, A. Galeckas and J. Linnros, “Time-resolved analysis of the white photoluminescence from SiO2 films after Si and C coimplantation”, Applied Physics Letters, Vol. 84, p. 25, 2004.
    27 D. J. Lockwood, “Light Emission in Silicon: From Physics to Devices”, Academic, Chapter 1, 1998.
    28 Y. Ishikawa, N. Shibata and S. Fukatsu, “Fabrication of highly oriented Si:SiO2 nanoparticles using low energy oxygen ion implantation during Si molecular beam epitaxy”, Applied Physics Letters, Vol. 68, p. 2249, 1996.
    29 P. Photopoulos, A.G. Nassiopoulou, D. N. Kouvatsos and A. Travlos, “Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices”, Applied Physics Letters, Vol. 76, p. 3588, 2000.
    30 B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice”, Journal of Applied Physics, Vol. 92, p. 3564, 2002.
    31 K. J. Chen, X. F. Huang, J. Xu and D. Feng, “Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum‐well structures”, Applied Physics Letters, Vol. 61, p. 2069, 1992.
    32 L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization”, Applied Physics Letters, Vol. 72, p. 43, 1998.
    33 L. Wang, Z. Ma, X. Huang, Z. Li, J. Li, Y. Bao, J. Xu, W. Li and K. Chen, “The room-temperature visible photoluminescence from nanocrystalline Si in Si/SiNx superlattices”, Solid State Communications, Vol. 117, pp. 239-244, 2001.
    34 S. Nihonyanagi, K. Nishimoto and Y. Kanemitsu, “Visible photoluminescence and quantum confinement effects in amorphous Si/SiO2 multilayer structures”, Journal of Non-Crystalline Solids, Vol. 299-302, pp. 1095-1099, 2002.
    35 T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku, and T. Nagasawa, “A tough, thermally conductive silicon carbide composite with high strength up to 1600 °C in air”, Science, Vol. 282, pp. 1295-1297, 1998.
    36 F. Liao, S. L. Girshick, W. M. Mook, W. W. Gerberich and M. R. Zachariah, “Superhard nanocrystalline silicon carbide films”, Applied Physics Letters, Vol. 86, p. 171913, 2005.
    37 M. Mejregany and C. A. Zorman, “SiC MEMS: opportunities and challenges for applications in harsh environments”, Thin Solid Films, Vol. 355-356, pp. 518-524, 1999.
    38 P. M. Sarro, “Silicon carbide as a new MEMS technology”, Sensors and Actuators A: Physical, Vol. 82, pp. 210-218, 2000.
    39 C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe and R. Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A: Physical, Vol. 97-98, pp. 410-415, 2002.
    40 M. Dai, K. Zhou, Z. Yuan, Q. Ding and Z. Fu, “The cutting performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials, Vol. 9, pp. 1753-1757, 2000.
    41 H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate pH-ISFET”, Sensors and Actuators B: Chemical, Vol. 44, pp. 441-445, 1997.
    42 P. Papakonstantinou, J. F Zhao, P. Lemoine, E. T. McAdams, J. A. McLaughlin, “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films”, Diamond and Related Materials, Vol. 11, pp. 1074-1080, 2002.
    43 S. J. Henley, J. D. Carey, S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon”, Applied Physics Letters, Vol. 85, p. 6236, 2004.
    44 Rusli, G. A. J. Amaratunga and J. Robertson, “Polarization memory of photoluminescence in amorphous carbon”, Physical Review B, Vol. 53, pp. 16306-16309, 1996.
    45 F. Demichelis, S. Schreiter and A. Tagliaferro, “Photoluminescence in a-C:H films”, Physical Review B, Vol. 51, pp. 2143-2147, 1995.
    46 J. Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering: R: Reports, Vol. 37, pp. 129-281, 2002.
    47 V. I. Merkulov, D. H. Lowndes, G. E. Jellison, A. A. Puretzky and D. B. Geohegan, “Structure and optical properties of amorphous diamond films prepared by ArF laser ablation as a function of carbon ion kinetic energy”, Applied Physics Letters, Vol. 73, p. 2591, 1998.
    48 O. S. Panwar, B. Deb, B. S. Satyanarayana, M. A. Khan, R. Bhattacharyya and A. K. Pal,“Characterization of as grown and nitrogen incorporated tetrahedral amorphous carbon films deposited by pulsed unfiltered cathodic vacuum arc process”, Thin Solid Films, Vol. 472, pp. 180-188, 2005.
    49 O. S. Panwar, M. A. Khan, B. Bhattacharjee, A. K. Pal, B. S. Satyanarayan, P. N. Dixit, R. Bhattacharyya, M. Y. Khan, “Reflectance and photoluminescence spectra of as grown and hydrogen and nitrogen incorporated tetrahedral amorphous carbon films deposited using an S bend filtered cathodic vacuum arc process”, Thin Solid Films, Vol. 515, pp. 1597-1606, 2006.
    50 W. S. Choi, K. Kim, J. Yi and B. Hong, “Diamond-like carbon protective anti-reflection coating for Si solar cell”, Materials Letters, Vol. 62, pp. 577-580, 2008.
    51 L. Y. Huang, J. Lu and K. W. Xu, “Investigation of the relation between structure and mechanical properties of hydrogenated diamond-like carbon coatings prepared by PECVD”, Materials Science and Engineering A, Vol. 373, pp. 45-53, 2004.
    52 S. E. Rodil, R. Olivares, H. Arzate and S. Muhl, “Properties of carbon films and their biocompatibility using in-vitro tests”, Diamond and Related Materials, Vol. 12, pp. 931-937, 2003.
    53 R. Wächter and A. Cordery, “Effects of post-deposition annealing on different DLC films”, Diamond and Related Materials, Vol. 8, pp. 504-509, 1999.
    54 W. -J. Wu and M.-H. Hon, “Thermal stability of diamond-like carbon films with added silicon”, Surface and Coatings Technology, Vol. 111, pp. 134-140, 1999.
    55 H. W. Choi, D. M. Gage, R. H. Dauskardt, K.-R. Lee and K. H. Oh, “Effects of thermal annealing and Si incorporation on bonding structure and fracture properties of diamond-like carbon films”, Diamond and Related Materials, Vol. 18, pp. 615-619, 2009.
    56 G. J. Wan, P. Yang, Ricky K. Y. Fu, Y. F. Mei, T. Qiu, S. C. H. Kwok, Joan P. Y. Ho, N. Huang, X. L. Wu and Paul K. Chu, “Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition”, Diamond and Related Materials, Vol. 15, pp. 1276-1281, 2006.
    57 S. C. Trippe, R. D. Mansano, F. M. Costa and R. F. Silva, “Mechanical properties evaluation of fluor-doped diamond-like carbon coatings by nanoindentation”, Thin Solid Films, Vol. 446, pp. 85-90, 2004.
    58 A. H. Tan, “Corrosion and tribological properties of ultra-thin DLC films with different nitrogen contents in magnetic recording media”, Diamond and Related Materials, Vol. 16, pp. 467-472, 2007.
    59 A. -Y. Wang, K. -R. Lee, J. -P. Ahn and J. H. Han, “Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique”, Carbon, Vol. 44, pp. 1826-1832, 2006.
    60 N. Kikuchi, E. Kusano, T. Tanaka, A. Kinbara and H. Nanto, “Preparation of amorphous Si1-xCx (0≤x≤1) films by alternate deposition of Si and C thin layers using a dual magnetron sputtering source”, Surface and Coatings Technology, Vol. 149, pp. 76-81, 2002.
    61 C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures”, Advanced Materials, Vol. 22, pp. 5058-5062, 2010.
    62 M. Xu, V. M. Ng, S. Y. Huang, J. D. Long and S. Xu, “Growth of SiC nanoparticle films by means of RF magnetron sputtering”, IEEE Transactions on Plasma Science, Vol. 33, pp. 242-243, 2005.
    63 J. -Y. Seo, S. -Y. Yoon, K. Niihara and K. H. Kim, “Growth and microhardness of SiC films by plasma-enhanced chemical vapor deposition”, Thin Solid Films, Vol. 406, pp. 138-144, 2002.
    64 K. Kametani, K. Sudoh and H. Iwasaki, “Growth of SiC nanodots on Si(111) by exposure to ferrocene and annealing studied by scanning tunneling microscopy”, Thin Solid Films, Vol. 467, pp. 50-53, 2004.
    65 L. Cao, H. Jiang, H. Song, Z. Li and G. Miao, “Thermal CVD synthesis and photoluminescence of SiC/SiO2 core-shell structure nanoparticles”, Journal of Alloys and Compounds, Vol. 489, pp. 562-565, 2010.
    66 K. J. Kim, S. Lee, J. H. Lee, M. H. Roh, K. Y. Lim, and Y. W. Kim, “Structural and Optical Characteristics of Crystalline Silicon Carbide Nanoparticles Synthesized by Carbothermal Reductions”, Journal of the American Ceramic Society, Vol. 92, pp. 424-428, 2009.
    67 C. K. Chung and B. H. Wu, “Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering”, Nanotechnology, Vol. 17, pp. 3129-3133, 2006.
    68 A. Fissel, B. Schröter and W. Richter, “Low‐temperature growth of SiC thin films on Si and 6H-SiC by solid‐source molecular beam epitaxy”, Applied Physics Letters, Vol. 66, p. 3182, 1995.
    69 Z. C. Feng, A. J. Mascarenhas, W. J. Choyke and J. A. Powell, “Raman scattering studies of chemical‐vapor‐deposited cubic SiC films of (100) Si”, Journal of Applied Physics, Vol. 64, p. 3176, 1988.
    70 Y. Li, P. S. Dorozhkin, Y. Bando and D. Golberg, “Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes”, Advanced Materials, Vol. 17, pp. 545-549, 2005.
    71 M. W. Shin and J. G. Song, “Study on the photoelectrochemical etching process of semiconducting 6H-SiC wafer”, Materials Science and Engineering B, Vol. 95, pp. 191-194, 2002.
    72 M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices”, IEEE Transactions on Electron Devices, Vol. 40, pp. 645-655, 1993.
    73 C. I. Harris, S. Savage, A. Konstantinov, M. Bakowski and P. Ericsson, “Progress towards SiC products”, Applied Surface Science, Vol. 184, pp. 393-398, 2001.
    74 D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda and K. Takatori, “Ultrahigh-quality silicon carbide single crystals”, Nature, Vol. 430, pp. 1009-1012, 2004.
    75 M. Soueidan, G. Ferro, O. Kim-Hak, F. Cauwet and B. Nsouli, “Vapor-liquid-solid growth of 3C-SiC on α-SiC substrates. 1. growth mechanism”, Crystal Growth & Design, Vol. 8, pp. 1044-1050, 2008.
    76 A. Kassiba, M. Makowska-Janusik, J. Bouclé, J. F. Bardeau, A. Bulou and N. Herlin-Boime, “Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: Experimental and numerical simulations”, Physical Review B, Vol. 66, p. 155317, 2002.
    77 P. Zhang, V. H. Crespi, E. Chang, S. G. Louie and M. L. Cohen, “Computational design of direct-bandgap semiconductors that lattice-match silicon”, Nature, Vol. 409, pp. 69-71, 2001.
    78 F. A. Reboredo, L. Pizzagalli and G. Galli, “Computational engineering of the stability and optical gaps of SiC quantum dots”, Nano Letters, Vol. 4, pp. 801-804, 2004.
    79 H. W. Shim, K. C. Kim, Y. H. Seo, K. S. Nahm, E. K. Sub, H. J. Lee and Y. G. Hwang, “Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition”, Applied Physics Letters, Vol. 70, p. 1757, 1997.
    80 J. R. O’Connor, J. Smiltens, “Silicon carbide-a high temperature semiconductor”, Pergamon, 1960.
    81 Z. R. Huang, B. Liang, D. L. Jiang and S. H. Tan, “Preparation of nanocrystal SiC powder by chemical vapour deposition”, Journal of Materials Science, Vol. 31, pp. 4327-4332, 1996.
    82 Z. J. Li, J. L. Zhang, A. Meng and J. Z. Guo, “Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties”, Journal of Physical Chemistry B, Vol. 111, pp. 22382-22386, 2006.
    83 H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan and C. M. Lieber, “Synthesis and characterization of carbide nanorods”, Nature, Vol. 375, pp. 769-772, 2006.
    84 J. L. Liu, J. Q. Gao, J. K. Cheng, X. Jiang, J. F. Yang and G. J. Qiao, “Effects of source materials and container on growth process of SiC crystal”, Crystal Growth & Design, Vol. 6, pp. 2166-2168, 2006.
    85 Y. M. Tairov and V. F. Tsvetkov, “Investigation of growth processes of ingots of silicon carbide single crystals”, Journal of Crystal Growth, Vol. 43, pp. 209-212, 1978.
    86 J. Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu and J. X. Wu, “Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route”, Journal of Physical Chemistry B, Vol. 104, pp. 5251-5254, 2000.
    87 X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu and P. K. Chu, “Experimental evidence for the quantum confinement effect in 3C-SiC Nanocrystallites”, Physical Review Letters, Vol. 94, p. 026102, 2005.
    88 J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang and P. K. Chu, “Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method”, Nanotechnology, Vol. 18, p. 365603, 2007.
    89 C. K. Chung, C. C. Peng, B. H. Wu and T. S. Chen, “Residual stress and hardness behaviors of the two-layer C/Si films”, Surface and Coatings Technology, Vol. 202, pp. 1149-1153, 2007.
    90 Y. X. Wang, H. P. He, Y. Cao and H. G. Tang, “Growth of crystalline SiC film free of cavities by heating PS/silica sol-gel coatings on Si (111) substrate”, Materials Letters, Vol. 57, pp. 1179-1183, 2003.
    91 T. M. Lei, Z. M. Chen, J. P. Ma and M. B. Yu, “SiC Crystallization in Carbonized Si (111) Layers”, Chinese Journal of Semiconductors, Vol. 18, p. 317, 1997.
    92 A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling”, Applied Physics Letters, Vol. 94, p. 221110, 2009.
    93 U. Coscia, G. Ambrosone and D. K. Basa, “Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix”, Journal of Applied Physics, Vol. 103, p.063507, 2008.
    94 J. Robertson, “Improving the properties of diamond-like carbon”, Diamond and Related Materials, Vol. 12, pp. 79-84, 2003.
    95 J. Robertson and E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon”, Physical Review B, Vol. 35, p. 2946, 1987.
    96 Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film”, Optics Express, Vol. 18, pp. 20439-20444, 2010.
    97 M. B. Yu, Rusli, S. F. Yoon, Z. M. Chen, J. Ahn, Q. Zhang, K. Chew and J. Cui, “Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method”, Journal of Applied Physics, Vol. 87, p. 8155, 2000.
    98 D. Beeman, J. Sliverman, R. Lynds and M. R. Anderson, “Modeling studies of amorphous carbon”, Physical Review B, Vol. 30, pp. 870-875, 1984.
    99 S. Anders, A. Anders, I. G. Brown, B. Wei, K. Komvopoulos, J. W. Ager III and K. M. Yu, “Effect of vacuum arc deposition parameters on the properties of amorphous carbon thin films”, Surface and Coatings Technology, Vol. 68-69, pp. 388-393, 1994.
    100 C. S. Yang, K. S. Oh, J. Y. Ryu, D. C. Kim, J. S. Yong, C. K. Choi, H.-J. Lee, S. H. Um and H. Y. Chang, “A study on the formation and characteristics of the Si---O---C---H composite thin films with low dielectric constant for advanced semiconductor devices”, Thin Solid Films, Vol. 390, pp. 113-118, 2001.
    101 Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng and S. J. Chua, “Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix”, Chemical Physics Letters, Vol. 339, pp. 319-322, 2001.
    102 L. Ratke and P. W. Voorhees, “Growth and Coarsening: Ostwald Ripening in Material Processing”, Springer, p. 117, 2002.
    103 A. Richter, H. -J. Scheibe, W. Pompe, K. -W. Brzezinka and I. Muhling, “About the structure and bonding of laser generated carbon films by Raman and electron energy loss spectroscopy”, Journal of Non-Crystalline Solids, Vol. 88, pp. 131-144, 1986.
    104 A. Avila, I. Montero, L. Galán, J. M. Ripalda, and R. Levy, “Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study”, Journal of Applied Physics, Vol. 89, p. 212, 2001.
    105 X. Z. Ding, F. M. Zhang, X. H. Liu, P. W. Wang, W. G. Durrer, W. Y. Cheung, S. P. Wong and I. H. Wilson, “Ion beam assisted deposition of diamond-like nanocomposite films in an acetylene atmosphere”, Thin Solid Films, Vol. 346, pp. 82-85, 2001.
    106 C. K. Chung and B. H. Wu, “Effect of amorphous Si layer on the reaction of carbon and silicon in the C/Si multilayer by high vacuum annealing”, Thin Solid Films, Vol. 515, pp. 1985-1991, 2006.
    107 Y. Kimura and T. Katoda, “Effects of strain on crystallization of amorphous silicon characterized by laser Raman spectroscopy”, Applied Surface Science, Vol. 117-118, pp. 790-793, 1997.
    108 A. Kailer, K. G. Nickel and Y. G. Gogotsi, “Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations”, Journal of Raman Spectroscopy, Vol. 30, pp. 939-946, 1999.
    109 J. Liu and Y. K. Vohra, “Raman Modes of 6H Polytype of Silicon Carbide to Ultrahigh Pressures: A Comparison with Silicon and Diamond”, Physical Review Letters, Vol. 72, pp. 4105-4108, 1994.
    110 H. Nienhaus, T. U. Kampen and W. Mönch, “Phonons in 3C-, 4H-, and 6H-SiC”, Surface Science Letter, Vol. 324, pp. L328-L332, 1995.
    111 William D. Callister, Jr., “Fundamentals of Materials Science and Engineering 2nd ed.”, John Wiley & Sons, NJ, pp. 420-427, 2005
    112 K.-T. Chu, Z. Q. Jin, V. M. Chakka and J. P. Liu, “Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites”, Journal of Physics D: Applied Physics, Vol. 38, p. 4009, 2005.

    下載圖示
    2016-09-23公開
    QR CODE